¹³C NMR Spectroscopy for the Differentiation of Enantiomers in Complex Systems using Chiral Solvating Agents (CSA)

Míriam Pérez-Trujillo, Eva Monteagudo, Teodor Parella

Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain

INTRODUCTION

¹H NMR Spectroscopy & Complex Systems

• Pure enantiomeric mixture with complex ¹H NMR spectrum

• Mixture of compounds , e.g. Chiral Metabonomics ¹

- **Multiplicity of signals** \rightarrow High $\Delta\Delta\delta$ needed \rightarrow Partial enantioresolution of signals \rightarrow Inaccuracy of the R/S molar ratio measurement
- Low chemical shift range \rightarrow Overlapping \rightarrow Hampers the enantiodifferentiation study

Download the poster here

1D¹H vs 1D¹³C NMR SPECTROSCOPY FOR THE STUDY OF COMPLEX SYSTEMS

R/S Molar Ratio Measurement

Table 1. Theoretical and measured (by the ratio of the signal integrals) *R/S* molar ratio values of mixtures of R,S-AMI. Measured values correspond to three different experiments: 1D ¹H (zg), 1D ¹³C with NOE contribution (zgpg) and 1D ¹³C without NOE contribution (zgig). The observational error for each measurement in percentage is indicated. The three mixtures were prepared from a 50 mM racemic AMI solution and the CSA used was 4,5 equivalents of R-PA.

Theoretical	Measured <i>R/S</i> ratio and Error ^b							
S/R ratio ^a	¹ H			¹³ C				
(R:S)					pg		ig	
	H atom	meas.	error (%)	C atom	meas.	error (%)	meas.	error (%)
1	H-1	0,98	1,62 *	C-1	1,01	1,25	1,00	0,11
(50:50)	H-2	1,01	1,28 *	C-2	1,00	0,35	1,01	0,99
	H-2'	0,97	2,92 *	C-3	1,00	0,31	0,99	0,71
	H-3	0,77	22,90 ***p	C-3a	0,98	2,40	1,03	2,66
	H-3'	-	- */**					
3	H-1	3,08	2,50 *	C-1	3,00	0,14	3,00	0,03
(25:75)	H-2	4,34	44,57 *	C-2	3,00	0,05	3,03	1,00
	H-2'	3,38	12,73 *	C-3	3,06	1,98	3,02	0,62
	H-3	-	**	C-3a	2,91	2,87	3,10	3,20
	H-3'	-	- */**					
9	H-1	6,98	22,44 *	C-1	9,05	0,57	8,81	2,10
(10:90)	H-2	11,11	23,41 *	C-2	8,92	0,90	8,95	0,58
	H-2'	10,11	12,30 *	C-3	8,97	0,29	9,01	0,11
	H-3	-	**	C-3a	-	*	-	*
	H-3'	12,58	39,80 *					

Figure 1. a) 2.2 mM Racemic IBU in D₂O; b) with 4.6 equivalents of β CD added and c) sample spiked with S-IBU. Experiments performed in a 500 MHz spectrometer equipped with a TCI cryoprobe.

Figure 3. a) 50 mM Racemic AMI in CDCl₃; b) with 4.5 equivalents of *R*-PA added and c) after spiking the sample with S-AMI. Experiments performed in a 500 MHz spectrometer equipped with a TCI cryoprobe.

^a From weighted values

^b Observational error (fm-fr)*100/fr

Signal partially split

^{*(p)} Signal (partially) overlapped with another signal of the spectrum

CONCLUSIONS

Though experimental times are longer than using ¹H NMR spectroscopy, observing ¹³C nuclei is a convenient information-rich alternative in many situations and particularly when studying complex systems.

The 1D {¹H} ¹³C NMR experiment:

- provides valuable and complementary information to the 1D ¹H NMR experiment
- extends the possibilities of enantiodifferentiation to fully deuterated and nonproton containing compounds

Figure 2. a) 2.3 mM Racemic TRP in D₂O; b) with 5.4 equivalents of 18C6TCA added and c) after spiking the sample with L-TRP. Experiments performed in a 500 MHz spectrometer equipped with a TCI cryoprobe.

Pérez-Trujillo, M. Lindon, J.C., Parella, T., Keun, H., Nicholson, J.K., Athersuch, T.J. Anal. Chem. 2012, 84, 2868-2874. 2 Pérez-Trujillo, M.; Virgili, A., Tetrahedron-Asymmetr. 2006, 17, 2842-2846.

Figure 4. Plot of the SNR of split C2 signal of R,S-AMI in front of the ET and the number of transients (ns) of the 1D pg {¹H} ¹³C NMR experiment. Results for concentrations of analyte of 100, 50, 10 and 5 mM are indicated. Experiments were carried out in CDCl₃, in the presence of 4.5 equivalents of *R*-AP, at 298.0 K of temperature and at a magnetic field of 500 MHz with a cryogenic probe spectrometer. Estimated values for analogous experiments under a magnetic field of 800 MHz are shown.

• is a powerful alternative to the ¹H NMR experiment due to the intrinsic high dispersion of the ¹³C and to the easiness of obtaining a proton decoupled spectrum; and that overcomes the main drawbacks of the 1D ¹H NMR experiment (see above)

• has a huge potential for the enantiomeric study of complex mixtures (Chiral Metabonomics)

SeRMN – UAB blog: http://sermn.uab.cat

ACKNOWLEDGEMENTS

Financial support for this research provided by MICINN (project CTQ2012-32436) and Bruker Española S.A. are gratefully acknowledged. We also thank to the SeRMN, Universitat Autonoma de Barcelona, for allocating instrument time to this project.

9th EUROMAR Conference. 30th June – 5th July, Hersonissos, Crete (Greece)