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Introduction

Recently, it has appeared a growing interest in spatially localized NMR spectroscopic techniques. Several high-resolution NMR methods L1
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applying spatial frequency encoded excitation into the NMR tube have been proposed for obtaining specific information from a particular 1= o — L —
slice as, for instance, to obtain broadband homodecoupled 'H spectra using the Zangger-Sterk (ZS) method*.

The most serious drawback of spatially encoded NMR experiments is their reduced sensitivity because the observed signal only arises from a @ L J," 0,
discrete slice of the sample. In this work, we exploit the sensitivity benefits of applying a multiple-frequency modulated pulse to excite “““ f ’QS"'
simultaneously different slices in a single NMR experiment. Our proposal is based on the careful setting of multiple offsets to avoid the — _ ":“'ﬂljmﬁ? N
excitation of mutually J-coupled protons into the same slice which would produce distorted multiplets due to J,,,, evolution?. Multiple-Slice Selection

using multiple-frequency pulses

Methodology

NMR Pulse Sequences Application of multiple-frequency pulses

A) e B) 180° 150 As a proof of the method, we have applied it on a sample of ibuprofen, that contains a relative simple *H spectrum (Fig. 3A),
sel sel sel W, and on a sample of cyclosporine, which presents a more complex tH spectrum (Fig. 4A).
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Figure 1: Pulse sequences of the A) 1D z-profile image, B) 1D spatially-encoded single pulsed-field gradient echo (se- E) 211 \()\,/g 5 N
o _
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SPFGE) and C) 'H pure-shift experiments. Spatial frequency encoding is achieved by simultaneous application of a | S/Nyw: 19.1 21.3 H i H
. . . . . . . 15.6 16.1 N)H/
spatial-encoding gradient (G,) and a frequency-selective 1802 *H pulse. The G, gradient is adjusted to cover a spectral T 20.9 10.1 E) H 0 0
width of k*SW_,, (k>1). G, gradients act as defocusing/refocusing coherence elements. The duration of G; gradient is J | . <5 S/N,: 21.28
two times G,. The delays 1, 1, and t_are automatically calculated so that t, + T, =1,; T, = 7 T, = 1/4*SW,. D) 23.03 . 22.58
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Evaluation of effectiveness of multiple-frequency pulses x
We have used two basic experiments (Fig. 1A-B) to evaluate the effectiveness of multiple- B) S/N,y: 87 88.1 C) o SNy 1.54 s 100 2.34 075
frequency pulses in slice-selective spectra: 1D z-profile image (Fig. 2A-F) and se-SPFGE 78.0 783 87.1 ' Ll e e X8
experiments (Fig. 2G-L) to visualize the frequency excitation achieved along the z dimension and “ 91‘6 l 9}’;2 1 B) S/N..: 80.38
the experimental effects on the NMR spectrum, respectively. 78.02 7398 28,00
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Figure 3: A) Conventional 'H NMR spectra of ibuprofen in CDCl,. The Figure 4: A) Conventional *H NMR spectra of cyclosporine in benzene-d6.
D J | experimental S/N ratio has been normalized for each individual signal. B) The experimental S/N ratio has been normalized for each individual
) (= A ) 3.96 Signals arising of individual SPFGE experiments (G.=0) to account for T, signal. B) Signals arising of individual SPFGE experiments (G.=0). C,D)
W 4 offsets > L relaxation losses during the echo. C,D) single-slice se-SPFGE spectra single-slice se-SPFGE spectra using normalized scaling k factor of 1 and 2
using a normalized scaling k factor of 1 and 2, respectively. E) Multi-slice respectively. E) Multi-slice se-SPFGE spectrum using an amplification k
se-SPFGE spectrum using an amplification k factor of 2 and 15 different factor of 2 and 22 different offsets. A single scan and a 20ms Gaussian-
C) = — ) I) > 11 offsets. A single scan and a 20ms Gaussian-shaped pulse were used in all shaped pulse were used in all experiments. Spectrum C was recorded
2 Offse“‘” i experiments. Spectrum C was recorded using a square-shaped encoding using a square-shaped encoding gradient of 0.59 G/cm and spectra D
gradient of 0.495 G/cm and spectra D and E with a G of 0.99 G/cm. and E with a G, of 1.196 G/cm.
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Figure 2: A-F) Schematic z-profile of a 99.96% D,0 sample (pulse sequence used shown in Fig. 1A) using a multiple- JL 1 | A
frequency pulse with 0 (G=off), 1, 2, 4, 8 and 16 different offsets, respectively; G-L) se-SPFGE spectra (pulse B B
sequence used shown in Fig. 1B) using a multiple-frequency pulse with 1, 2, 4, 8 and 16 different offsets and with ) S/N,: 1 ) S/N,.: 1
the experimental signal-to-noise ratio related to the conventional *H NMR spectra (I). In all experiments, a 20ms 3 _ . |
Gaussian-shaped 1802 *H pulse was simultaneous applied with an encoding gradient of 0,865 G/cm.
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Conclusions |
v The simultaneous multi-slice excitation improves the sensitivity of slice- ; : z : : > oom v 95 56 51 5 5 45 oom

selective NMR experiments.

Figure 5: Sensitivity-enhanced broadband-homodecoupled *H NMR spectra Figure 6: Sensitivity-enhanced broadband-homodecoupled 'H NMR

v" The experimental effects on the NMR spectrum can be quickly monitored by of ibuprofen. A) Conventional *H spectrum; B) and C) show the single-slice  spectra of cyclosporine. Expanded H,, region from the A) conventional;
. _ . and 8-site multi-slice pure-shift experiment, respectively. An amplification k B,C) single-slice and 8-site multi-slice pure-shift 'H spectra, respectively.
recordmg se-SPFGE experlments' factor of 2, a square-shaped G, of 0.99 G cmand a 20ms Gaussian-shaped An amplification k factor of 2, a square-shaped G; of 1.13 G/cm and a 80
. . . . < 4 1802 'H pulse were used in all experiments. 8 transients were collected for ms Rsnob 1802 'H pulse were used in all experiments. 4 transients were
‘/ Easy |mplementat|on without need to mOdIfy existing pulse >€quences, S0 each one of the 32 t, increments of 0.68 s each were acquired with 1/SW,= collected for each one of the 32 t;, of 0.68 s each were acquired with
can be immediately adaptEd to a Wlde range Of applications. 10ms and a relaxation delay of 1 s, in total time of 8 min. 1/SW,= 10ms and a relaxation delay of 1 s, in total time of 4 min.
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