Band-selective pure shift ¹H NMR experiments with full sensitivity

Laura Castañar, Pau Nolis, Albert Virgili, and Teodor Parella

Servei de RMN and Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Barcelona (Spain) Laura.castanar@uab.cat

Introduction

Over recent years, a significant interest has emerged to develop homodecoupled NMR techniques that offer enhanced resolution by simplifying the homonuclear J_{HH} pattern, and therefore reducing signal overlapping. Some years ago, the pseudo 2D Zangger-Sterk (ZS) method was proposed as a powerful tool to obtain high-resolved 1D ¹H homodecoupled spectra¹ and it has been further refined and improved to obtain "pure shift" multidimensional NMR spectra.^{2,3} The main challenge in this field relies in the design of new approaches which do not involve loss of sensitivity due to spatial selection.

Here we present a new NMR method based on the instant real-time 1D ZS experiment³ for the fast acquisition of full-sensitive HOmodecoupled Band-Selective (HOBS) ¹H NMR spectra⁴. Its implementation in 2D experiments and several practical applications to distinguish small chemical shift differences, such as found in enantiodifferentiation studies by using chiral solvating agents (CSAs)⁵, the analysis of individual signal intensity decays for measuring T_1/T_2 relaxation times in overlapped signals⁶ or the measurement of heteronuclear coupling constants from simplified multiplet patterns,⁷ are described.

HOBS Experiment

Pulse Sequence

The spatial encoding gradients that are applied simultaneously with the selective 180° pulses in the original instant ZS scheme are omitted in the HOBS experiment, avoiding sensitivity losses.

Band-selective

Figure 1: Pulse scheme of the 1D HOBS experiment. Homodecoupling during acquisition is achieved by applying a pair of hard/semiselective 180° ¹H pulses at the middle of $2\Delta = AQ/n$ periods, where AQ is the acquisition time and *n* the number of concatenated loops. δ is the duration of a gradient and its recovery delay. G₁, G₂ and G₃ gradients act as defocusing/refocusing coherence elements. The selectivity of the semiselective 180° ¹H pulse for both excitation and decoupling is set as a function of the selected region.

NMR Spectra

The HOBS method is a band/frequency-selective experiment which affords homodecoupled singlet signals in particular areas of the ¹H spectrum whenever the protons are not mutually J-coupled.

Figure 2: 600.13 MHz A) conventional and B,C) HOBS ¹H NMR spectra of 25mM cyclosporine in C_6D_6 (**1**) after selection of H_{α} and NH regions, respectively. All spectra were recorded with the same receiver gain and with **a single scan**. HOBS spectra were acquired by applying 5ms 180° REBURP pulses for both excitation and decoupling. 8K data points were acquired using AQ=576ms and n=40 (Δ =7.2ms). The strengths of G_1 , G_2 and G_3 were set to 12.3, 21.9 and 33.7 G/cm, respectively, with durations of 500µs. The asterisks marked in (B) stand for unavoidable nondecoupled effects of an AB spin system.

Implementing HOBS in 2D NMR Experiments

The implementation of the HOBS approach becomes reliable for a large number of multidimensional NMR experiments^{4,7} and guarantees the rapid data acquisition of region-selective homodecoupled NMR spectra even for samples at low concentrations.

Figure 4: A) Pulse scheme of the HOBS-TOCSY experiment. B) TOCSY and C) HOBS-TOCSY spectra of **1** after selection of H_{α} region. Four scans were collected for each 128 t_1 increments of 2K complex points and a mixing time (τ_m) of 60ms giving an experimental time of 13 min for each spectrum. Homodecoupling was achieved using an AQ=170ms and 20 loops (Δ =4.3ms) whereas all the other experimental parameters were as described in Figure 2.

Figure 5: A) Pulse scheme of the F2-heterocoupled HOBS-HSQC experiment. B) conventional and C) HOBS-HSQC spectra of **1** optimized to 145Hz after selection of H_{α} region. Two scans were collected for each one of the 64 t_1 increments of 2K complex data points. Homodecoupling was achieved using an AQ=570ms and n=50 (Δ =5.7ms). The 90° and 180° band-selective pulses were EBURP-2 of 3.5ms and REBURP of 5.0ms, respectively. The experimental time for each 2D spectrum was of 5min.

Figure 6: A) Pulse scheme of the F2-heterocoupled HOBS-HSQMBC experiment. B) selHSQMBC and C) HOBS-HSQMBC spectra of **1** optimized to 8Hz after selection of H_{α} region. Four scans were collected for each one of the 128 t_1 increments of 4K complex data points. The region-selective 180° ¹H pulse was a REBURP of 5ms. Homodecoupling was achieved using AQ=1.13s and n=20 (Δ =28.2ms). The experimental time for each 2D spectrum was of 20min.

HOBS Applications

Fast and efficient enantiodifferentiation by using CSAs⁵

Measurement of T₁/T₂ relaxation times in overlapped signals⁶

4 2 **∦** ⊎H

A)

. . . .

Conclusions

The real-time HOBS method:

✓ yields homodecoupled NMR spectra of specific regions with an excellent spectral quality.

Figure 7: 600.13 MHz ¹H NMR spectra of 50 mm (*R*,*S*)-1aminoindan (1:1 proportion) in CDCl₃: A) before and B) after the addition of 4.5 equivalents of (*R*)-(-)-1-(9-anthryl)-2,2,2trifluoroethanol (Pirkle alcohol) as the CSA. C) Expanded multiplets extracted from individual selective 1D HOBS experiments (Gaussian-shaped 180° pulse of 20 ms, Δ =18.93 ms, AQ=2.27 s, and n=60). All 1D spectra B and C were acquired with **a single scan** and plotted with the same vertical scale.

Figure 8: A) Pulse scheme of the 1D HOBS-IR experiment. Expansion of B) conventional IR and C) HOBS-IR spectra to determine T_1 values for some overlapped H_{α} protons of **1**. Homodecoupling was achieved using a 5ms REBURP 180° pulse, Δ =8.9ms, AQ=569ms and n= 32.

✓ guarantees fast acquisition and conventional data processing.

✓ affords spectra with full sensitivity and enhanced resolution.

can be easily implemented into conventional mono- and multidimensional NMR experiments.

References:

 ¹ K. Zangger, H. Sterk **1997**, *J. Magn. Reson*. 124, 486-489.
² (a) M. Nilsson, G. A. Morris **2007**, *Chem. Comm*. 9, 933-935. (b) J. A. Aguilar et al. **2010**, *Angew. Chem. Intl. Ed*. 49, 3901-3903.
³ N. H. Meyer, K. Zangger **2013**, *Angew. Chem. Intl. Ed*. 52, 7143-7146.
⁴ L. Castañar *et al*. **2013**, *Chem. Eur. J.* 19, 17283–17286.
⁵ L. Castañar *et al*. **2014**, *ChemPhysChem.* 15, 854-857.
⁶ L. Castañar *et al.* **2014**, *J. Magn. Reson*. 244, 30-35.

⁷ L. Castañar et al. **2014**, J. Magn. Reson. 238, 63-69.

Acknowledgements

Financial support for this research provided by MINECO of Spain (project CTQ2012-32436) is gratefully acknowledged. We also thank to the Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, for allocating instrument time to this project.

10th EUROMAR Conference. 29th June – 3rd July, Zürich (Switzerland)

SeRMN – UAB blog: http://sermn.uab.cat