Differentiation of Enantiomers in Complex Systems by NMR Spectroscopy and Chiral Solvating Agents (CSA) : Applications and Methodology

SeRM

<u>Míriam Pérez-Trujillo</u>, Eva Monteagudo, Teodor Parella

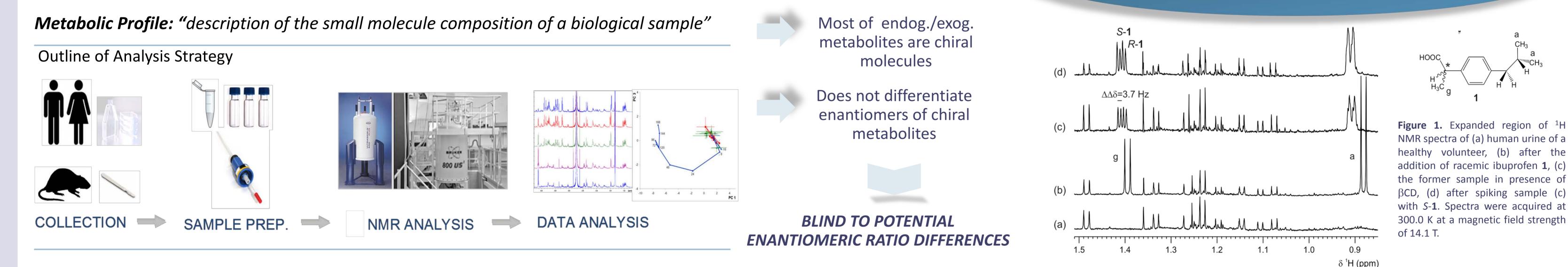
Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain

de Barcelona

INTRODUCTION

Complex Systems

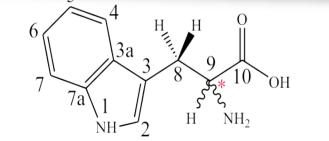
Mixture of compounds:
 body fluids (urine, plasma, ...)
 extracts of plants/tissues
 crude of reactions

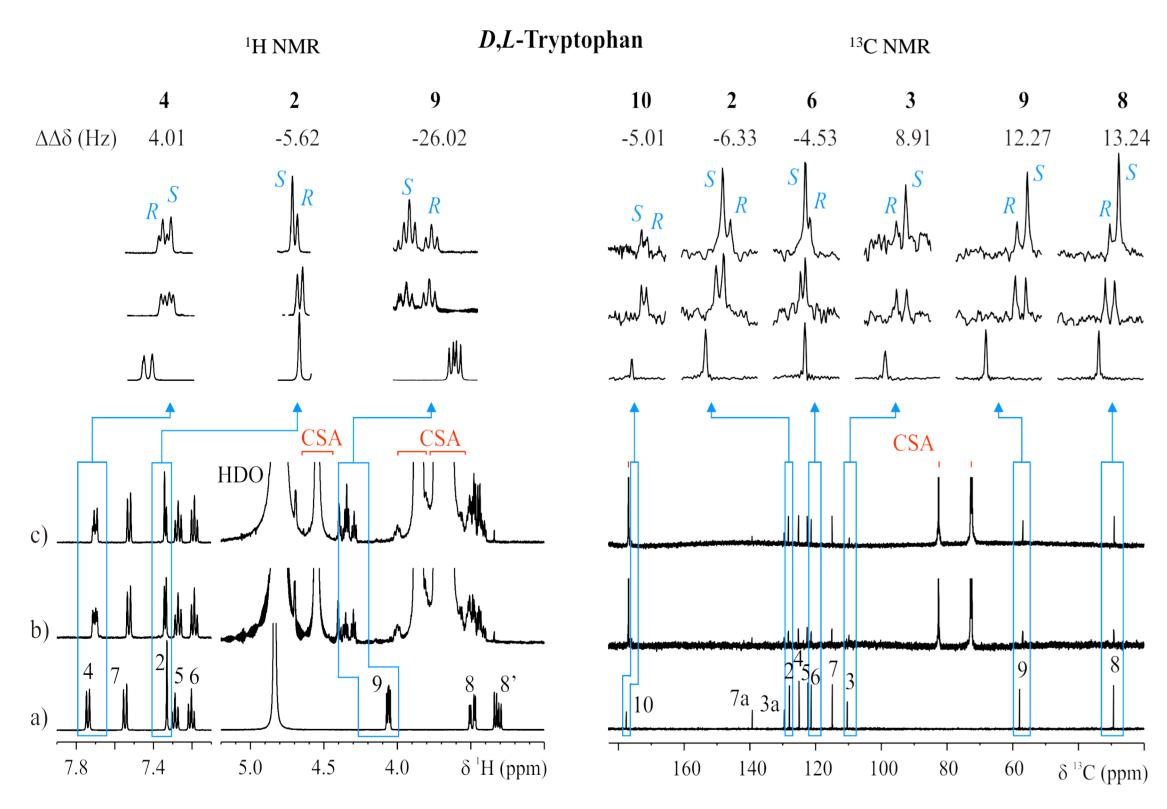

 Pure enantiomeric mixtures with complex ¹H spectrum

Enantiodifferentiation by CSA & NMR Spectroscopy	Advantages	Fields of Application		
Example : pure sample in an organic solvent by ¹ H NMR ¹ $\int \Delta \delta$ $FLUOXETINE$ $\int (+)^{\circ} $	 ✓ Simple ✓ Fast ✓ Robust ✓ No derivatization ✓ No purification 	 ✓ Pharmacology ✓ Chiral Metabonomics ² ✓ Natural Products ✓ Toxicity Studies ✓ 		
Linditionijjerentiditori oj rucenne judovetine in CDCI3 using ADTE-10 us CSA				

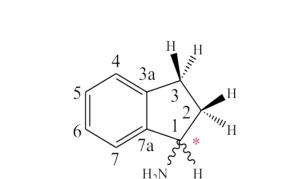
CHIRAL METABONOMICS² - NEW APPLICATION

Towards Enantiospecific Metabolic Profiling


Enantiodifferentiation of *R,S*-ibuprofen within human urine by ¹H NMR and a CSA



¹³C NMR ³: OVERCOME THE OVERLAPPING PROBLEM - METHODOLOGY


Enantiodifferentiation by ¹³C NMR & CSAs

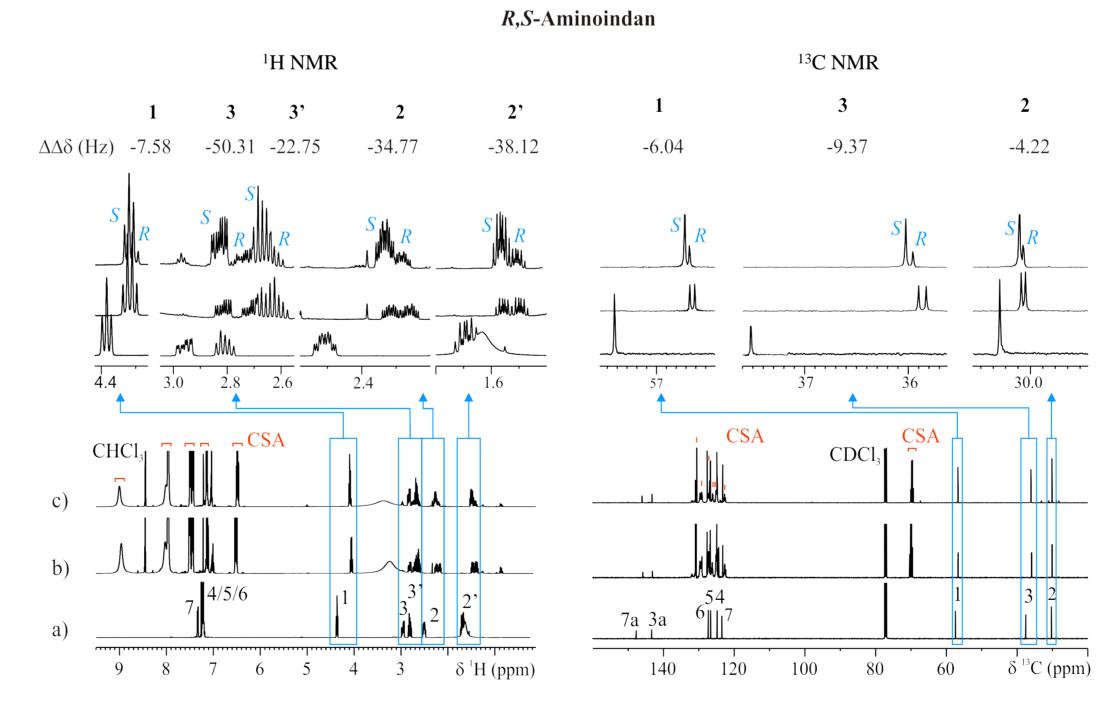

R/S Molar Ratio Measurement

Figure 2. a) 2.3 mM Racemic TRP in D_2O ; b) with 5.4 equivalents of 18C6TCA added and c) after spiking the sample with L-TRP. Experiments performed in a 500 MHz spectrometer equipped with a TCI cryoprobe.

Figure 3. a) 50 mM Racemic AMI in $CDCl_3$; b) with 4.5 equivalents of *R*-PA added and c) after spiking the sample with *S*-AMI. Experiments performed in a 500 MHz spectrometer equipped with a TCI cryoprobe.

Table 1. Theoretical and measured (by the ratio of the signal integrals) *R/S* molar ratio values of mixtures of *R*,*S*-AMI. Measured values correspond to three different experiments: 1D ¹H (zg, r.d. 2s), 1D ¹³C with NOE contribution (zgpg, r.d. 2 s) and 1D ¹³C without NOE contribution (zgig, r.d. 8 s). The observational error for each measurement in percentage is indicated. The three mixtures were prepared from a 50 mM racemic AMI solution and the CSA used was 4,5 equivalents of *R*-PA.

Theoretical	Measured <i>R/S</i> ratio and Error ^b							
S/R ratio ^a	$^{1}\mathrm{H}$			¹³ C				
(R:S)				pg			ig	
	H atom	meas.	error (%)	C atom	meas.	error (%)	meas.	error (%)
1	H-1	0,98	1,62 *	C-1	1,01	1,25	1,00	0,11
(50:50)	H-2	1,01	1,28 *	C-2	1,00	0,35	1,01	0,99
	H-2'	0,97	2,92 *	C-3	1,00	0,31	0,99	0,71
	H-3	0,77	22,90 **p	C-3a	0,98	2,40	1,03	2,60
	H-3'	-	- */**					
3	H-1	3,08	2,50 *	C-1	3,00	0,14	3,00	0,0.
(25:75)	H-2	4,34	44,57 *	C-2	3,00	0,05	3,03	1,00
	H-2'	3,38	12,73 *	C-3	3,06	1,98	3,02	0,62
	H-3	-	**	C-3a	2,91	2,87	3,10	3,20
	H-3'	-	- */**					
9	H-1	6,98	22,44 *	C-1	9,05	0,57	8,81	2,10
(10:90)	H-2	11,11	23,41 *	C-2	8,92	0,90	8,95	0,5
	H-2'	10,11	12,30 *	C-3	8,97	0,29	9,01	0,1
	H-3	-	**	C-3a	-	*	-	*
	H-3'	12,58	39,80 *					

SeRMN – UAB blog: http://sermn.uab.cat

^a From weighted values

^b Observational error (fm-fr)*100/fr

^{*}Signal partially split

^{**(p)} Signal (partially) overlapped with another signal of the spectrum

CONCLUSIONS

There is an interest in the differentiation (and identification) of enantiomers in complex systems, such as complex mixtures. This is the case of enantiodifferentiation studies of biological samples. Recently, a new area in metabonomics was described named under "Chiral Metabonomics", in which enantiomeric molecules are differentiated in a metabolic profile; the experiment was conducted using a CSA and ¹H NMR spectroscopy.²

The differentiation of enantiomers in complex samples by ¹H NMR is often impeded by overlapping, due to the small δ range of proton and to the multiplicity of the signals. Though experimental times are longer than for ¹H, observing ¹³C nuclei is a convenient information-rich alternative in many situations and particularly when studying complex systems, since 1D {¹H} ¹³C NMR experiment:

overcomes the main overlapping drawback of the ¹H NMR experiment due to the intrinsic high dispersion of the ¹³C and to the easiness of obtaining a proton decoupled spectrum.
 provides valuable/complementary information to the ¹H NMR experiment and extends the possibilities of enantiodifferentiation to fully deuterated and nonproton containing compounds.
 has a huge potential for the enantiomeric study of complex mixtures (Chiral Metabonomics).

¹ Pérez-Trujillo, M.; Virgili, A., Tetrahedron-Asymmetr. **2006**, 17, 2842-2846. ² Pérez-Trujillo, M. ; Lindon, J.C.; Parella, T. **2013** Submitted.

ACKNOWLEDGEMENTS: Financial support for this research provided by MICINN (project CTQ2012-32436) and Bruker Española S.A. are gratefully acknowledged. We also thank to the SeRMN, Universitat Autonoma de Barcelona, for allocating instrument time to this project.

SMASH NMR Conference. 22nd– 25th September, Santiago de Compostela, Spain

Download the poster here