Chiral Recognition by Dissolution DNP NMR Spectroscopy of ¹³C-Labeled DL-Methionine

<u>Eva Monteagudo^[a]</u>, Albert Virgili^[b], Teodor Parella^[a], Míriam Pérez-Trujillo^{[a]*}

^[a] Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Barcelona, Spain

^[b] Departament de Química, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Barcelona, Spain

Universitat Autònoma de Barcelona

INTRODUCTION

Enantiodifferentiation by :

Example of enantiodifferentiation of a racemic mixture by ¹H NMR using a chiral solvating agent (CSA)

Method developed

Proof of concept

Figure 1. ¹³C NMR spectra (150.92 MHz) of **(a)** DL-methionine (2.4 mM) in D_2O (expt 24 h 9 min) and **(b)** DL-methionine (2.4 mM) in D_2O after the addition of 19 equiv of (-)-18C6H4 (expt 24 h 9 min). Asterisks denote signals corresponding to the chiral auxiliary.

hyperpolarized DL-[1-¹³C]-methionine (2.2 mM) during the enantiodifferentiation experiment with CSA (-)-18C6H4 (15 equiv). Asterisks denote peaks corresponding to glycerol.

(2.2 mM) at thermal equilibrium with CSA (-)18C6H4 (15 equiv). The sample contains trityl radical, OX63, glycerol and H_2O . Asterisks and circles denote peaks corresponding to glycerol and CSA, respectively.

SUMMARY & CONCLUSIONS:

• Chiral recognition by dissolution DNP ¹³C NMR spectroscopy was demonstrated for the first time.^[3]

• A method integrating d-DNP and ¹³C NMR-aided enantiodifferentiation using chiral solvating agents was developed, in which only the chiral analyte was hyperpolarized and selectively observed by NMR spectroscopy.

• The described method enhances the sensitivity of the conventional NMR-based method and lightens the common problem of signal overlapping between analyte and CSA.

• Under hyperpolarization of the analyte, enantiodifferentiation $\Delta\Delta\delta$ and relative integration values split peaks were similar to those obtained at thermal equilibrium, whereas the enantioresolution quotient *E* decreased.

Pérez-Trujillo, M., Lindon, J.C., Parella, T., Keun, H., Nicholson, J.K., Athersuch, T.J. *Anal. Chem.* 2012, *84*, 2868-2874.
Pérez-Trujillo, M., Monteagudo, E., Parella, T. *Anal. Chem.* 2013, *85*, 10887-10894
Monteagudo, E., Virgili, A., Parella, T., Pérez-Trujillo, M. *Anal. Chem.* 2017, *89*, 4939-4944.

Acknowledgements

Financial support from the MINECO (CTQ2015-64436-P) is gratefully acknowledged. NMR studies were carried out at the joint NMR facility of the Universitat Autònoma de Barcelona and CIBER-BBN (Cerdanyola del Vallès).

SeRMN – UAB blog: http://sermn.uab.cat