Tag Archives: catalysis

Recyclable Mesoporous Organosilica Nanoparticles (MSN) for Asymmetric Organocatalysis

Li, Hao, Míriam Pérez-Trujillo, Xavier Cattoën & Roser Pleixats. 2019. Recyclable Mesoporous Organosilica Nanoparticles Derived from Proline-Valinol Amides for Asymmetric Organocatalysis. ACS Sustainable Chemistry & Engineering 7(17). 14815-14828. DOI: 10.1021/acssuschemeng.9b02838

This is the first report on the obtention of functionalized MSN by a co-condensation procedure with a structurally complex chiral precursor. The functionalized MSN have been characterized by elemental analysis, 29Si and 13C CP MAS NMR, transmission electron microscopy, scanning electron microscopy, N2-sorption measurements, dynamic light scattering, ζ-potential, and powder X-ray diffraction. We have evaluated the activity of these materials as recyclable catalysts in the asymmetric aldol reaction. The use of organosilica nanoparticles reduces the problems of diffusion and low reaction rates encountered with bulk organosilicas.

11B-MQMAS Solid State NMR experiment performed on polyaminoborane derivatives

no spine minimum. half size. Editor: Tamara Hanna JEM: Esther RTP: Bryan NolteAmmonia Borane Dehydrogenation Promoted by a Pincer-Square-Planar Rhodium(I) Monohydride: A Stepwise Hydrogen Transfer from the Substrate to the Catalyst
Esteruelas, M.A.; Nolis, P.; Oliván, M.; Oñate, M.; Vallribera, A.; Vélez, A. Inorg. Chem., 2016, 55 (14), pp 7176–7181. DOI: 10.1021/acs.inorgchem.6b01216

The pincer d8-monohydride complex RhH-{xant(PiPr2)2} (xant(PiPr2)2 = 9,9-dimethyl-4,5-bis-(diisopropylphosphino)xanthene) promotes the release of 1 equiv of hydrogen from H3BNH3 and H3BNHMe2 with TOF50% values of 3150 and 1725 h−1, to afford [BH2NH2]n and [BH2NMe2]2 and the tandem ammonia borane dehydrogenation−cyclohexene hydrogenation. Continue reading 11B-MQMAS Solid State NMR experiment performed on polyaminoborane derivatives

Chloroperoxidase-catalyzed amino alcohol oxidation: Substrate specificity and novel strategy for the synthesis of N-Cbz-3-aminopropanal

S00329592“Chloroperoxidase-catalyzed amino alcohol oxidation: Substrate specificity and novel strategy for the synthesis of N-Cbz-3-aminopropanal” by G. Masdeu,  M. Pérez-Trujillo, J. López-Santín and Gregorio Álvaro. Process Biochemistry 2016; DOI:10.1016/j.procbio.2016.05.022

The ability of chloroperoxidase (CPO) to catalyze amino alcohol oxidations was investigated. The oxidations of compounds with different configurations with respect to the amine position towards hydroxyl – using H2O2 and tert-butyl hydroperoxide (t-BuOOH) – were analyzed in terms of the initial reaction rate, substrate conversion, and CPO operational stability. Continue reading Chloroperoxidase-catalyzed amino alcohol oxidation: Substrate specificity and novel strategy for the synthesis of N-Cbz-3-aminopropanal