Tag Archives: drugs

NMR could improve the detection of “date rape” drug GHB

Direct Monitoring of Exogenous γ-Hydroxybutyric Acid in Body Fluids by NMR Spectroscopy” by M. Palomino-Schätzlein, Y. Wang, A. Brailsford, T. Parella, D. Cowan, C. Legido-Quigley, M. Pérez-Trujillo. Anal. Chem., 2017, 89 (16), pp 8343–8350. DOI: http://dx.doi.org/10.1021/acs.analchem.7b01567

γ-Hydroxybutyric acid (GHB) is a popular drug increasingly associated with cases of drug-facilitated sexual assault (DFSA). Currently, expanding procedures of analysis and having forensic evidence of GHB intake in a long term are mandatory. Up to now, most studies have been performed using GC/MS and LC-MS as analytical platforms, which involve significant manipulation of the sample and, often, indirect measurements. In this work, procedures used in NMR-based metabolomics were applied to a GHB clinical trial on urine and serum. Detection, identification, and briefly quantification of the drug by NMR methods were surveyed, as well as the use of NMR-based metabolomics for the search of potential surrogate biomarkers of GHB consumption. Results demonstrated the suitability of NMR spectroscopy, as a robust nondestructive technique, to fast and directly monitor exogenous GHB in almost intact body fluids and its high potential in the search for metabolites associated with GHB intake. This initial work show some strengths of  NMR spectroscopy and standard methods routinely used in the NMR analysis of biological samples to approach the problem. These features could open up new interesting possibilities in future studies, complementing current procedures.

This work on media:   spectroscopynow.com  phys.org  / sciencedaily.com  /  canadafreepress.com / forensicmag.com  / cbinsights.com

Removal of pharmaceuticals from hospital wastewater by Pleurotus ostreatus. Identification of pharmaceuticals metabolites by NMR

“Preliminary evaluation of Pleurotus ostreatus for the removal of selected pharmaceuticals from hospital wastewater” by L. Palli,* F. Castellet‐Rovira, M. Pérez‐Trujillo, D. Caniani, M. Sarrà‐Adroguer, R. Gori Biotechnology Progress, 2017. DOI: http://dx.doi.org/10.1002/btpr.2520

The fungus Pleurotus ostreatus was investigated to assess its ability to remove diclofenac, ketoprofen, and atenolol in hospital wastewater. The degradation test was carried out in a fluidized bed bioreactor testing both the batch and the continuous mode. In batch mode, diclofenac disappeared in less than 24 h, ketoprofen was degraded up to almost 50% in 5 days while atenolol was not removed. In continuous mode, diclofenac and ketoprofen removals were about 100% and 70% respectively; atenolol degradation was negligible during the first 20 days but it increased up to 60% after a peak of laccase production and notable biomass growth. In order to identify the enzymatic system involved, further experiments were carried out in flasks. Two intermediates of diclofenac and ketoprofen were detected by nuclear magnetic resonance (NMR) spectroscopy. Moreover P. ostreatus was able to reduce chemical oxygen demand of the hospital wastewater which is an important advantage comparing to other fungi in order to develop a wastewater treatment process.


Visiting PhD Student Yaoyao Wang

Blog2Today we are saying goodbye to our dear Yaoyao, though we hope to see her very soon again.

Yaoyao is currently finishing her PhD on metabonomics applied to clinical biomarkers in the Legido-Quigley Lab at King’s College London (KCL).

She has been visiting us for the last two months, during which we have been working together in two metabonomics projects related to drug misuse biomarkers and chiral metabonomics. It has been a great pleasure for us to spend this time with her and continue with this collaboration from now on.

Seminar: Biomarker and metabolomics, a novel approach to detect drug misuse

Yaoyao Wang, visiting PhD student from King’s College London, will be giving a talk on  December the 18th at 10:00 h in the SeRMN. Her talk is entitled “Biomarker and metabolomics: a novel approach to detect drug misuse”.


Yaoyao is from Clinical Biomarkers Lab of the Institute of Pharmaceutical Science, King’s College London (KCL). Her PhD project focuses on developing metabolomics approach to identify biomarkers for drug misuse through the analysis of human biofluids samples and the development of data treatment methods, using R (XCMS) and other bioinformatics tools. She has been collaborating intensively with the Drug Control Centre of KCL using LC-MS.

Her talk will include the metabolomics biomarker discovery of low dose salbutamol in urine collected for anti-doping tests and preliminary longitudinal metabolomics study of “date-rape” drug GHB, as well as a glance of the other on-going projects in Clinical Biomarkers Lab.

All interested people are welcome to attend this seminar.