Category Archives: Our Publications

These are the scientific articles published by SeRMN personnel. Posts may contain a short description of the research work objective and relevance, in addition to the abstract of the article, the bibliographic reference, and the article DOI if available.

Prenatal cerebral and cardiac metabolic changes in a rabbit model of fetal growth restriction

Simões, Rui V., Miquel E. Cabañas, Carla Loreiro, Miriam Illa, Fatima Crispi & Eduard Gratacós. 2018. Assessment of prenatal cerebral and cardiac metabolic changes in a rabbit model of fetal growth restriction based on 13C-labelled substrate infusions and ex vivo multinuclear HRMAS. PLOS ONE 13(12). e0208784. DOI: 10.1371/journal.pone.0208784

Background: We have used a previously reported rabbit model of fetal growth restriction (FGR), reproducing perinatal neurodevelopmental and cardiovascular impairments, to investigate the main relative changes in cerebral and cardiac metabolism of term FGR fetuses during nutrient infusion.

Methods: FGR was induced in 9 pregnant New Zealand rabbits at 25 days of gestation: one horn used as FGR, by partial ligation of uteroplacental vessels, and the contralateral as control (appropriate for gestation age, AGA). At 30 days of gestation, fasted mothers under anesthesia were infused i.v. with 1-13C-glucose (4 mothers), 2-13C-acetate (3 mothers), or not infused (2 mothers). Fetal brain and heart samples were quickly harvested and frozen down. Brain cortex and heart apex regions from 30 fetuses were studied ex vivo by HRMAS at 4°C, acquiring multinuclear 1D and 2D spectra. The data were processed, quantified by peak deconvolution or integration, and normalized to sample weight.

Continue reading Prenatal cerebral and cardiac metabolic changes in a rabbit model of fetal growth restriction

New time-efficient approach in TOCSY and HSQC experiments

Nolis, P., Motiram-Corral, K., Pérez-Trujillo, M., & Parella, T. (2018). Interleaved Dual NMR Acquisition of Equivalent Transfer Pathways in TOCSY and HSQC experiments. ChemPhysChem. DOI: 10.1002/cphc.20180103

A dual NMR data acquisition strategy to handle and detect two active equivalent transfer pathways is presented and discussed. We illustrate the power of this time-efficient approach by collecting two different 2D spectra simultaneously in a single experiment: (i) TOCSY or HSQC-TOCSY spectra with different mixing times, (ii) F2-13C-coupled and decoupled HSQC spectra, (iii) conventional and pureshift HSQC spectra, and (iv) complementary HSQC and HSQC-TOCSY spectra.

Saving time using different NMR concepts

Nolis, P., Motiram-Corral, K., Pérez-Trujillo, M., & Parella, T. (2018). Broadband homodecoupled Time-Shared 1H-13C and 1H-15N HSQC experiments. Journal Magnetic Resonance. DOI: 10.1016/j.jmr.2018.11.005

The concepts of pure-shift NMR and time-shared NMR are merged in a single NMR experiment. A 13C/15N time-shared version of the real-time BIRD-based broadband homodecoupled HSQC experiment is described. This time-efficient approach affords simultaneously 1H-13C and 1H-15N pure-shift HSQC spectra in a single acquisition, while achieving substantial gains in both sensitivity and spectral resolution. We also present a related 13C/15N-F2-coupled homodecoupled version of the CLIP-HSQC experiment for the simultaneous measurement of 1JCH and 1JNH from the simplified doublets observed along the direct dimension. Finally, a novel J-resolved HSQC experiment has been designed for the simple and automated determination of both 1JCH/1JNH from a 2D J-resolved spectrum.

4 experiments in 1 shot

Motiram-Corral, K., Pérez-Trujillo, M., Nolis, P., & Parella, T. (2018). Implementing one-shot multiple-FID acquisition into homonuclear and heteronuclear NMR experiments. Chemical Communications. DOI: 10.1039/C8CC08065H

Multiple-FID acquisition (MFA) within the same scan is applied to acquire simultaneously multiple 2D spectra from a single NMR experiment. A discussion on the incorporation of the MFA strategy in several homonuclear and heteronuclear 2D pulse sequences is presented. As a proof of concept, a set of novel COSY, TOCSY and HMBC experiments are reported as a time-efficient solution in small-molecule NMR spectroscopy.

Pulse programs & Datasets

MRI/MRS in treated Alzheimer mice

Differential effects of apoE and apoJ mimetic peptides on the action of an anti-Aβ scFv in 3xTg-AD mice” by L. Montoliu-Gaya, J. Güell-Bosch, G. Esquerda-Canals, A.R. Roda, G. Serra-Mir, S. Lope-Piedrafita, J.L. Sánchez-Quesada, S. Villegas. Biochem Pharmacol. 2018, 155:380-392. DOI: 10.1016/j.bcp.2018.07.012.

Anti-Aβ immunotherapy has emerged as a promising approach to treat Alzheimer’s disease (AD). The single-chain variable fragment scFv-h3D6 is an anti-Aβ antibody fragment that lacks the Fc region, which is associated with the induction of microglial reactivity by the full-length monoclonal antibody bapineuzumab. ScFv-h3D6 was previously shown to restore the levels of apolipoprotein E (apoE) and apolipoprotein J (apoJ) in a tripletransgenic- AD (3xTg-AD) mouse model. Since apoE and apoJ play an important role in the development of AD, we aimed to study the in vivo effect of the combined therapy of scFv-h3D6 with apoE and apoJ mimetic peptides (MPs).

Magnetic Resonance Imaging showed a general tendency of the different treatments to protect against the reduction in brain volume. This protection was further suggested by MRS, since all the treatments tended to recover the levels of Ala, which is involved in the alanine-glucose cycle, and NAA, which is a marker for cell viability. All the treatments in the present work recovered the IL-33 levels, and apoE-MP showed a potent anti-inflammatory effect in terms of glial activation that was decreased in the presence of scFv-h3D6, whereas the combination of apoJ-MP and scFvh3D6 was not detrimental. Moreover, the endogenous apoE and apoJ levels were decreased by scFvh3D6, but the MPs induced a simultaneous increase in both apolipoproteins, which reflects a coordinated expression between them.

Exopolysaccharides from olive brines could reduce the adhesion of ETEC K88 to intestinal epithelial cells

“Exopolysaccharides from olive brines could reduce the adhesion of ETEC K88 to intestinal epithelial cells”  by Y. Zhu, G. Gonzalez-Ortiz, R. Jiménez-Díaz, M. Pérez-Trujillo, T. Parella, P. Lopez-Colom, SM Martín-Orúe. Food & function, 2018, 9, 3884-3894. DOI:

This study aims to explore the biological functions of the isolated exopolysaccharides (EPSs) produced during the industrial fermentation of olives against enterotoxigenic E. coli (ETEC) K88. Exopolysaccharides were isolated from five industrial fermenters. Analysis of their monosaccharide composition by GLC revealed that the main components were glucose (27%–50%) and galactose (23%–33%) followed by rhamnose (4–23%) and arabinose (6–17%). The 1H NMR spectrum showed a very similar profile between samples, and a more in-depth analysis revealed the presence of an α-pyranose in the form of α-D-Glcp-(1→) and two different α-furanoses, with chemicals shift values, suggesting the presence of α-D-Glcf and α-D-Galf. Miniaturized in vitro tests demonstrated the ability of EPS samples to attach specifically to ETEC K88 (P < 0.05) with variable intensities. The competition test did not show the ability to block the ETEC K88 adhesion to IPEC-J2 cells; however, in the displacement test, all EPS samples were shown to effectively remove the pathogens attached to the cells (P < 0.01). These results suggest that the EPSs produced during the fermentation of table green olives could interfere with the attachment of opportunistic pathogens onto the intestinal epithelial cells. This would open the possibility of novel functional properties for this traditional Mediterranean fermented food and for the isolated EPSs as candidates for nutraceutics to be used in human and/or animal diets in the prevention and treatment of ETEC diarrhoea.

Solid State NMR supports a new study on hydride composite for hydrogen storage

A hydride composite featuring mutual destabilisation and reversible boron exchange: Ca(BH4)2–Mg2NiH4

N. Bergemann, C. Pistidda, C. Milanese, M. Aramini, S. Huotari, P. Nolis, A. Santoru, M. R. Chierotti, A.-L. Chaudhary, M. D. Baro, T. Klassen and M. Dornheim.

ABSTRACT:The system Ca(BH4)2–Mg2NiH4 is used as a model to prove the unique possibility to fully reverse the borohydride decomposition process even in cases where the decomposition reaction leads to undesired stable boron containing species (boron sinks). The formation of MgNi2.5B2 directly from Ca(BH4)2 or from CaB12H12 and amorphous boron allows an unexpectedly easy transfer of the boron atoms to reversibly form Ca(BH4)2 during rehydrogenation. In addition, to the best of our knowledge, the mutual destabilisation of the starting reactants is observed for the first time in Ca(BH4)2 based Reactive Hydride Composite (RHC) systems. A detailed account of dehydrogenation and rehydrogenation reaction mechanisms as the function of applied experimental conditions is given.


PhD Thesis: Development of Resolution-Enhanced NMR Techniques for Improved Small Molecules Structural Analysis

Last July 14th 2018 Núria Marcó defended her PhD Thesis entitled: Development of Resolution-Enhanced NMR Techniques for Improved Small Molecules Structural Analysis


The present doctoral thesis is framed within the field of Nuclear Magnetic Resonance (NMR) spectroscopy.

NMR spectroscopy is an analytic technique and, therefore, one of its main objectives is to unravel the correct structure of the molecules analyzed.This present doctoral thesis  is focused on this main objective. This work consists in a compendium of 7 publications, written in several prestigious scientific journals, that develop in depth the efficient and accurate determination of the constitution, configuration and conformation of small molecules thanks to the application of resolution improvements techniques.

In order to do that it is studied the accurate and efficient measurement of isotropic (homo- and heteronuclear scalar coupling constants) for the 2D structre determination, as well as the anisotropic parameters (RDCs, RCSAs and RQCs) for the 3D structure analysis. These anisotropic parameters allows us the discrimination of the different conformers of a molecule and can be found in weakly alignment media. PMMA gel provides an easy, reusable, and practical way to obtain this weakly alignment media. In this work, It has been researched the best way to get these anisotropic parameters, developing and adapting new pulse sequences to this type of media.

To get the correct structure (2D and 3D) it is important to obtain a precise and accurate measurement. In this thesis the great accuracy of isotropic and anisotropic parameters has been achieved through the use of resolution improvement techniques such as Pure-Shift, Spectral Aliasing and Non Uniform Sampling.

In addition it has been applied protocols for the easy automatization and measurement of coupling constants in isotropic and anisotropic media.

Also it has been design improved pulse sequences to achieve the measurement of longer- range heteronuclear connectivities that will  increase the amount of information that we will have available to do the structural analysis

Each experiment has been discussed from a methodological point of view. An assessment on its application has been also performed.

Pulse Programs and Data Set Examples:

Publication 1:
Extending long-range heteronuclear NMR connectivities by HSQMBC-COSY and HSQMBC-TOCSY experiments Saurí, J.; Marcó, N.; Williamson, R. T.; Martin, G. E.; Parella, T. J. Magn. Reson. 2015, 258, 25–32.
DOI 10.1016/j.jmr.2015.06.004

Pulse Program Code for Bruker:

Data set Example:


Publication 2:
Ultra high-resolution HSQC: Application to the efficient and accurate measurement of heteronuclear coupling constants  Marcó, N.; Fredi, A.; Parella, T. Chem. Commun. 2015, 51 (15), 3262–3265.
DOI 10.1039/C4CC10279G

Pulse Program Code for Bruker:

Data set Example:


Publication 3:
Isotropic/Anisotropic NMR Editing by Resolution-Enhanced NMR Spectroscopy Marcó, N.; Gil, R. R.; Parella, T. ChemPhysChem 2018, 19, 9, 1024-1029.
DOI: 10.1002/cphc.201800094

Pulse Programs Code for Bruker:


Publication 4:
Structural discrimination from in situ measurement of 1DCH and 2DHH residual dipolar coupling constants Marcó, N.; Gil, R. R.; Parella, T. Magn. Reson. Chem. 2017, 55 (6), 540–545.
DOI 10.1002/mrc.4575

Pulse Programs Code for Bruker:

Data set Example:


Publication 5:
Perfect 1JCH-resolved HSQC: Efficient measurement of one-bond proton-carbon coupling constants along the indirect dimension Marcó, N.; Souza, A. A.; Nolis, P.; Gil, R. R.; Parella, T. J. Magn. Reson. 2017, 276, 37–42.
DOI: 10.1016/j.jmr.2017.01.002

Pulse Programs Code for Bruker:

Data set Example:


Publication 6:
1JCH NMR Profile: Identification of key structural features and functionalities by visual observation and direct measurement of one-bond proton-carbon coupling constants Marcó, N.; Souza, A. A.; Nolis, P.; Cobas, C.; Gil, R. R.; Parella, T. J. Org. Chem. 2017, 82 (4), 2040–2044.
DOI: 10.1021/acs.joc.6b02873

Pulse Programs Code for Bruker:


Publication 7:
2JHH-resolved HSQC: Exclusive determination of geminal proton-proton coupling constants Marcó, N.; Nolis, P.; Gil, R. R.; Parella, T. J. Magn. Reson. 2017, 282, 18–26.
DOI: 10.1016/j.jmr.2017.06.014

Pulse Programs Code for Bruker:


Solid-State-NMR a useful tool for the characterization of Hydrogen Storage Composite System

In Situ Formation of TiB2 Nanoparticles for Enhanced Dehydrogenation/Hydrogenation Reaction Kinetics of LiBH4–MgH2 as a Reversible Solid-State Hydrogen Storage Composite System

Fahim Karimi* , María V. C. Riglos, Antonio Santoru , Armin Hoell, Vikram S. Raghuwanshi, Chiara Milanese, Nils Bergemann, Claudio Pistidda, Pau Nolis , Maria D. Baro, Gökhan Gizer, Thi-Thu Le, P. Klaus Pranzas, Martin Dornheim, Thomas Klassen, Andreas Schreyer, and Julián Puszkiel

J. Phys. Chem. C, Article ASAP
DOI: 10.1021/acs.jpcc.8b02258
Publication Date (Web): May 9, 2018
ABSTRACT:To enhance the dehydrogenation/rehydrogenation kinetic behavior of the LiBH4–MgH2 composite system, TiF4 is used as an additive. The effect of this additive on the hydride composite system has been studied by means of laboratory and advanced synchrotron techniques. Investigations on the synthesis and mechanism upon hydrogen interaction show that the addition of TiF4 to the LiBH4–MgH2 composite system during the milling procedure leads to the in situ formation of well-distributed nanosized TiB2 particles. These TiB2 nanoparticles act as nucleation agents for the formation of MgB2 upon dehydrogenation process of the hydride composite system. The effect of TiB2 nanoparticles is maintained upon cycling.

NEW BOOK RELEASE: “Preclinical MRI methods and protocols”

“Preclinical MRI: Methods and Protocols” by Maria Luisa Garcia Martin and Pilar Lopez Larrubia (Editors). Part of the Methods in Molecular Biology book series (MIMB, volume 1718). DOI: 10.1007/978-1-4939-7531-0.

This book was conceived with the idea of providing an update on a wide variety of preclinical MRI methods and protocols to help technicians and researchers interested in this technology. The basics of MRI physics are introduced, followed by chapters describing updated methodology and protocols for some standard and more advanced MRI techniques covering diffusion, perfusion, functional imaging, in-vivo spectroscopy (proton and heteronuclear), susceptibility contrast MRI… The book also contains some chapters where some applications of those methods are illustrated in animal models of several diseases including cancer, stroke and neurodegeneration. Protocols are described in a step-by-step approach, with interesting notes and tips at the end of each chapter, which -a priori- should allow the new worker to obtain successful results with the first attempt ;o) .