Tag Archives: ecometabolomics

Metabolomics and transcriptomics to decipher molecular mechanisms underlying ectomycorrhizal root colonization of an oak tree

M. Sebastiana, A. Gargallo-Garriga, J. Sardans, M. Pérez-Trujillo, F. Monteiro, A. Figueiredo, M. Maia, R. Nascimento, M. Sousa Silva, A. N. Ferreira, C. Cordeiro, A. P. Marques, L. Sousa, R. Malhó & J. Peñuelas

Scientific Reports volume 11, Article number: 8576 (2021). https://doi.org/10.1038/s41598-021-87886-5

Mycorrhizas are known to have a positive impact on plant growth and ability to resist major biotic and abiotic stresses. However, the metabolic alterations underlying mycorrhizal symbiosis are still understudied. By using metabolomics and transcriptomics approaches, cork oak roots colonized by the ectomycorrhizal fungus Pisolithus tinctorius were compared with non-colonized roots. Results from this global metabolomics analysis suggest decreases in root metabolites which are common components of exudates, and in compounds related to root external protective layers which could facilitate plant-fungal contact and enhance symbiosis. Root metabolic pathways involved in defense against stress were induced in ectomycorrhizal roots that could be involved in a plant mechanism to avoid uncontrolled growth of the fungal symbiont in the root apoplast. Several of the identified symbiosis-specific metabolites, such as GABA, may help to understand how ectomycorrhizal fungi such as P. tinctorius benefit their host plants.

31P-NMR Metabolomics Revealed Species-Specific Use of Phosphorous in Trees

31P-NMR Metabolomics Revealed Species-Specific Use of Phosphorous in Trees of a French Guiana Rainforest, by Gargallo-Garriga, A.; Sardans, J.; Llusià, J.; Peguero, G.; Asensio, D.; Ogaya, R.; Urbina, I.; Langenhove, L.V.; Verryckt, L.T.; Courtois, E.A.; Stahl, C.; Grau, O.; Urban, O.; Janssens, I.A.; Nolis, P.; Pérez-Trujillo, M.; Parella, T.; Peñuelas, J.  Molecules 202025, 3960. https://doi.org/10.3390/molecules25173960

Productivity of tropical lowland moist forests is often limited by availability and functional allocation of phosphorus (P) that drives competition among tree species and becomes a key factor in determining forestall community diversity. We used non-target 31P-NMR metabolic profiling to study the foliar P-metabolism of trees of a French Guiana rainforest. The objective was to test the hypotheses that P-use is species-specific, and that species diversity relates to species P-use and concentrations of P-containing compounds, including inorganic phosphates, orthophosphate monoesters and diesters, phosphonates and organic polyphosphates. We found that tree species explained the 59% of variance in 31P-NMR metabolite profiling of leaves. A principal component analysis showed that tree species were separated along PC 1 and PC 2 of detected P-containing compounds, which represented a continuum going from high concentrations of metabolites related to non-active P and P-storage, low total P concentrations and high N:P ratios, to high concentrations of P-containing metabolites related to energy and anabolic metabolism, high total P concentrations and low N:P ratios. These results highlight the species-specific use of P and the existence of species-specific P-use niches that are driven by the distinct species-specific position in a continuum in the P-allocation from P-storage compounds to P-containing molecules related to energy and anabolic metabolism.

This article belongs to the Special Issue:

https://www.mdpi.com/journal/molecules/special_issues/nmr_metabolomics

PhD Thesis Defense: Metabolomics and stoichiometry adapted to the study of environmental impacts on plants. PhD Thesis by Albert Gargallo Garriga

 

I am defending my PhD thesis next Thursday (September 10, 2015) at 11.30am in the Sala d´Actes “Carles Miravitlles” of the Institut de Ciències de Materials de Barcelona (ICMAB), Campus UAB. The title of my thesis is “Metabolomics and stoichiometry adapted to the study of environmental impacts on plants” and below you can find an abstract of the work. If you are interested you are very welcome.

 

Portada

 

Metabolomics has allowed significant advances in biological sciences. An increasing number of ecological studies have applied a metabolomic approach to answer ecological questions (ecometabolomics) during the last few years. The work developed throughout this PhD thesis means a further step in the field of ecometabolomics. Continue reading PhD Thesis Defense: Metabolomics and stoichiometry adapted to the study of environmental impacts on plants. PhD Thesis by Albert Gargallo Garriga