Category Archives: Our Research

These are short reports about the research activities carried out at the SeRMN.
In them we describe the work done in collaboration with research groups, to summarize communications presented at scientific meetings, to report visits and stages at other laboratories or facilities, and to comment the meetings and workshops we have attended.

Metronomic treatment in immunocompetent preclinical glioblastoma

“Metronomic treatment in immunocompetent preclinical GL261 glioblastoma: effects of cyclophosphamide and temozolomide” by by L. Ferrer-Font,  N. Arias-Ramos, S. Lope-Piedrafita, M. Julià-Sapé , M. Pumarola, C. Arús  and A. P. Candiota. NMR Biomed. 2017. DOI: 10.1002/nbm.3748. 

Glioblastoma (GBM) causes poor survival in patients even when applying aggressive treatment. In preceding years, efforts have focused in new therapeutic regimens with conventional drugs to activate immune responses that may enhance tumor regression and prevent regrowth, as for example the “metronomic” approaches.

We have evaluated whether metronomic CPA or TMZ administration could increase survival in orthotopic GL261 in C57BL/6 mice, an immunocompetent model. Longitudinal in vivo studies with CPA (140 mg/Kg) or TMZ (range 140-240 mg/Kg) metronomic administration (every 6 days) were performed in tumor-bearing mice. Tumor evolution was monitored at 7T with T2-weighted MRI, Diffusion weighted imaging and MRSI-based nosological images of response to therapy. Obtained results demonstrated that both treatments resulted in increased survival (38.6+21.0 days, n=30) compared to control (19.4+2.4 days, n=18). Also, it was found a clear edema appearance during chemotherapeutic treatment suggesting inflammatory associated processes. The necropsy performed in mice cured from GBM after high TMZ cumulative dosage (980-1400 mg/Kg) revealed lymphoma incidence.

Long-term fertilization determines different metabolomic profiles and responses in saplings of three rainforest tree species with different adult canopy position

Long-term fertilization determines different metabolomic profiles and responses in saplings of three rainforest tree species with different adult canopy position” by  A. Gargallo-Garriga, S. J. Wright, J. Sardans, M. Pérez-Trujillo, M. Oravec, K. Večeřová,O. Urban, M. Fernández-Martínez, T. Parella, J. Peñuelas.

Plos One, 2017, 1-21. DOI: 10.1371/journal.pone.0177030

Tropical rainforests are frequently limited by soil nutrient availability. However, the response of the metabolic phenotypic plasticity of trees to an increase of soil nutrient availabilities is poorly understood. We expected that increases in the ability of a nutrient that limits some plant processes should be detected by corresponding changes in plant metabolome profile related to such processes. We studied the foliar metabolome of saplings of three abundant tree species in a 15 year field NPK fertilization experiment in a Panamanian rainforest. The largest differences were among species and explained 75% of overall metabolome variation.

Chiral Recognition by Dissolution DNP NMR Spectroscopy of 13C-Labeled DL-Methionine

“Chiral Recognition by Dissolution DNP NMR Spectroscopy of 13C-Labeled DL-Methionine” By Eva Monteagudo, Albert Virgili, Teodor Parella and Míriam Pérez-Trujillo.Anal. Chem., 2017, 89 (9), pp 4939–4944 DOI: 10.1021/acs.analchem.7b00156

A method based on d-DNP NMR spectroscopy to study chiral recognition is described for the first time. The enantiodifferentiation of a racemic metabolite in a millimolar aqueous solution using a chiral solvating agent was performed. Hyperpolarized 13C-labeled DL-methionine enantiomers were differently observed with a single-scan 13C NMR experiment, while the chiral auxiliary at thermal equilibrium remained unobserved. The method developed entails a step forward in the chiral recognition of small molecules by NMR spectroscopy, opening new possibilities in situations where the sensitivity is limited, for example, when a low concentration of analyte is available or when the measurement of an insensitive nucleus, like 13C, is required. The advantages and current limitations of the method, as well as future perspectives, are discussed.

Solving JHH measurement in overcrowded regions

Accurate measurement of JHH in overlapped signals by a TOCSY-edited SERF Experiment

André Fredi, Pau Nolis* and Teodor Parella*

Magnetic Resonance in ChemistryDOI: 10.1002/mrc.4572

Selective Refocusing (GSERF or the recent PSYCHEDELIC) experiments were originally designed to determine all proton-proton coupling constants (JHH) for a selected proton resonance. They work for isolated signals on which selective excitation can be successfully applied but, as happens in other selective experiments, fail for overlapped signals. To circumvent this limitation, a doubly-selective TOCSY-GSERF scheme is presented for the measurement of JHH in protons resonating in crowded regions. This new experiment takes advantage of the editing features of an initial TOCSY transfer to uncover hidden resonances that become accessible to perform the subsequent frequency-selective refocusing.

RDC measurements and application

joceah_v081i019.inddApplication to the structural discrimination of small molecules containing multiple stereocenters. One-Shot determination of residual dipolar couplings.
Castañar, L.; Garcia, M.; Hellemann, E.; Nolis, P.; Gil, R.; Parella, T.

 

A novel approach for the fast and efficient structural discrimination of molecules containing multiple stereochemical centers is described. A robust Jresolved HSQC experiment affording highly resolved 1JCH/1TCHsplittings along the indirect dimension and homodecoupled 1H signals in the detected dimension is proposed. The experiment enables in-situ distinction of both isotropic and anisotropic components of molecules dissolved incompressed PMMA gels, allowing a rapid and direct one-shot determination of accurate residual dipolar coupling constants from a single NMR spectrum

 

toc_joc_rdc

Mycobacteria clumping increase their capacity to damage macrophages

frontiersmicrobiology

 

“Mycobacteria clumping increase their capacity to damage macrophages” by C. Brambilla, M. Llorens-Fons, E. Julián, E. Noguera-Ortega, C. Tomàs-Martínez, M. Pérez-Trujillo, T. F. Byrd, F. Alcaide and M. Luquin.

Front. Microbiol. 7:1562.  DOI: 10.3389/fmicb.2016.01562

The rough morphotypes of non-tuberculous mycobacteria have been associated with the most severe illnesses in humans. This idea is consistent with the fact that Mycobacterium tuberculosis presents a stable rough morphotype. Unlike smooth morphotypes, the bacilli of rough morphotypes grow close together, leaving no spaces among them and forming large aggregates (clumps). Currently, the initial interaction of macrophages with clumps remains unclear. Thus, we infected J774 macrophages with bacterial suspensions of rough morphotypes of Mycobacterium abscessus containing clumps and suspensions of smooth morphotypes, primarily containing isolated bacilli. Using confocal laser scanning microscopy and electron microscopy, we observed clumps of at least 5 rough-morphotype bacilli inside the phagocytic vesicles of macrophages at 3 hours post-infection. These clumps grew within the phagocytic vesicles, killing 100% of the macrophages at 72 hours post-infection, whereas the proliferation of macrophages infected with smooth morphotypes remained unaltered at 96 hours post-infection. Thus, macrophages phagocytose large clumps, exceeding the bactericidal capacities of these cells. Furthermore, proinflammatory cytokines and granuloma-like structures were only produced by macrophages infected with rough morphotypes. Thus, the present study provides a foundation for further studies that consider mycobacterial clumps as virulence factors.

fig8

Figure. Content of GPL and structure of mycolic acids. (A) 1-D TLC analysis of the crude lipid extracts of M. abscessus strains. (B) 1H-NMR spectra of purified mycolic acid methyl esters from M. abscessus. (C) Relative molar ratios of molecular moieties cis-db, trans-db, cis-cp and trans-cp of mycolic acid methyl esters from M. abscessus.

SeRMN contribution to the 32nd AETE (European Embryo Transfer Association) Meeting

logo_aete_600

The 32nd European Embryo Transfer Association Meeting of 2016 was held in Barcelona (from the 9th to the 10th of September).

We presentented the poster:

Nuclear magnetic resonance (NMR) of goat follicular fluid shows different metabolic profiles among follicle size and female age” of S. Soto, M. Pérez-Trujillo, M.G. Catalá, M. Roura, D. Izquierdo, T. Parella, M.T. Paramio.

Abstract: Oocytes recovered from prepubertal goats are very heterogeneous in growth and grade of atresia which make them unpredictable for IVEP programs. We have observed that oocytes from prepubertal goats obtained from >3 mm follicles develop up to blastocyst stage at a similar percentage than oocytes from adult goats (18% vs 21%), suggesting that the follicle development and the follicular fluid (FF) content are more relevant to oocyte competence than the age of the donor. The aim of this study is to characterize the FF metabolomic profile from different follicular environments through a high-resolution 1H NMR-based metabolomic study. Samples of adult (n=40) and prepubertal (n=16) FF where collected by laparoscopic ovum pick-up (LOPU) and by aspiration of slaughterhouse ovaries, respectively. FF from small (< 3 mm) and large (> 3 mm) diameter follicles where pooled for each female. Multivariate ordination principal component analysis (PCA) was performed to detect patterns of sample ordination in the metabolomes. The unsupervised method clearly differed between the FF metabolomes of large and small follicles of prepubers and between the FF of preadolescent and adult individuals.

fig4

Figure. a) PCA scores plot (PC1-PC2) from 1H NMR spectral data of follicular fluid samples of preadolescent (n=16; blue dots) and adult (n=40; black dots) goats. b) PCA heat map loadings plot (PC1-PC2) with some discriminant variables assigned.

SeRMN at the SMASH NMR 2016 Conference

Some of our last research works has been presented at the annual meeting of the SmallMolecule NMR Conference (SMASH) that has been taken place in La Jolla (USA) from 11thto 14thSeptember 2016.

Teodor Parella presented two posters.
“In situ determination of 1DCH and 2DHH RDCs from a single 1JCH/2JHH -resolved NMR measurement” of Núria Marcó García, Roberto R. Gil and Teodor Parella.

Abstract: A fast RDC-assisted strategy involving the simultaneous determination of isotropic (scalar) and anisotropic (total) interactions is reported. The concerted use of individual 1DCH for all CHn multiplicities and 2DHH obtained from a single 1JCH/2JHH-resolved NMR spectrum offers an unambiguous assignment of diastereotopic protons and an efficient discrimination between all eight possible diastereoisomeric structures of strychnine which contains six stereocenters.

Figure: 500.13MHz JCH/JHH-Resolved spectra of 1 in A) isotropic CDCl3 and B) anisotropic PMMA-CDCl3 (2H nQ(CDCl3)=26 Hz) conditions. The projections along the F2 dimension are the conventional 1H spectrum in isotropic conditions and the 1H-CPMG spectrum in anisotropic conditions, respectively.

“Pure shift NMR covariance” of André Fredi, Pau Nolis, Carlos Cobas, Gary E. Martin, Teodor Parella.

Abstract: The development of novel experimental strategies to significantly enhance signal resolution by broadband homodecoupling is a current topic of high interest in 1H NMR spectroscopy . A number of different building blocks have been implemented into 1D and 2D homo- and heteronuclear experiments in order to provide resolution-enhanced pure chemical shift 1H NMR spectra, where signals appear collapsed to singlets. On the other hand, Covariance processing methods have been used to generate challenging NMR spectral representations . We present here the first attempts towards a general solution to generate Pure Shift NMR spectra by using Generalized Indirect Covariance (psGIC) co-processing3,4 . The current strategy is based on the calculation of a new 2D psGIC spectrum from the combination of a parent homo- or heteronuclear spectrum and a reference 2D F1-homodecoupled 1H- 1H correlation spectrum only showing diagonal cross-peaks (DIAG), which share a common 1H frequency dimension. Using psGIC, the F1 dimension in the DIAG spectrum is transferred to the F2 dimension of the parent spectrum, thus generating a new pure shift 2D spectrum

Figure: Generation of Pure Shift NMR spectra by using Generalized Indirect Covariance (psGIC)

PhD Thesis by Albert Gargallo Garriga: Publications and Data Sets

Portada

The links below point to the research articles and Mass Spectrometry and NMR Spectroscopy raw datasets that were part of my thesis work. The last link points to my Ph.D. Thesis in pdf format.

Chapter 1

MEE“Ecometabolomics: Optimized NMR-based method” by Albert Rivas-Ubach, Miriam Pérez-Trujillo, Jordi Sardans, Albert Gargallo-Garriga, Teodor Parella, Josep Peñuelas. Methods in Ecology and Evolution, February 2013. DOI: 10.1111/2041-210X.12028

Chapter 4

scireportsOpposite metabolic responses of shoots and roots to drought by Albert Gargallo-Garriga, Jordi Sardans, Míriam Pérez-Trujillo, Albert Rivas-Ubach, Michal Oravec, Teodor Parella and Josep Peñuelas. Scientific reports 4, Article number: 6829, October 2014. DOI: 10.1038/srep06829

Chapter 5

Warming differentially influences the effects of drought on stoichiometry and metabolomics in shoots and roots” by Albert Gargallo-Garriga, Jordi Sardans, Míriam Pérez-Trujillo, Michal Oravec,Otmar Urban, Anke Jentsch, Juergen Kreyling, Carl Beierkuhnlein Teodor Parella and Josep Peñuelas. New Phytologist. March 2015. DOI: 10.1111/nph.13377

Chapter 6

Plant Biology“Metabolomic responses of Quercus ilex seedlings to wounding simulating herbivory” By Jordi Sardans, Albert Gargallo-Garriga,Míriam Pérez-Trujillo, Teodor Parella, Roger Seco, Iolanda Filella, Josep  Peñuelas. Plant biology. April 2013. DOI: 10.1111/plb.12032

Chapter 7

Ph.D. Thesis