Category Archives: Our Research

These are short reports about the research activities carried out at the SeRMN.
In them we describe the work done in collaboration with research groups, to summarize communications presented at scientific meetings, to report visits and stages at other laboratories or facilities, and to comment the meetings and workshops we have attended.

Multiplicity-edited 1H-1H TOCSY experiment

Pau Nolis and Teodor Parella

Magnetic Resonance in Chemistry 2017 (DOI: 10.1002/mrc.4695)

Abstract

A 1H-1H TOCSY experiment incorporating 13C multiplicity information is proposed. In addition, broadband 1H homodecoupling in the indirect dimension can be implemented using a perfect BIRD module that affords exclusive 1H chemical shift evolution with full decoupling of all heteronuclear and homonuclear (including 2JHH) coupling constants. As a complement to the normal TOCSY and the recent PSYCHE-TOCSY experiments, this novel multiplicity-edited TOCSY experiment distinguishes between CH/CH3 (phased up) and CH2 (phased down) cross-peaks which facilitates resonance analysis and assignment.

SeRMN contribution to Symmetry 2017 Conference

 

Some of the SeRMN staff  presented our last research work about chirality at The first International Conference on Symmetry, Symmetry 2017, that took place from16th to 18th October in Barcelona. Find below a summary of our contribution.

Míriam Pérez-Trujillo presented a lecture entitled: “Chiral Recognition by Dissolution Dynamic Nuclear Polarization NMR Spectroscopy

Abstract: The recognition of enantiomeric molecules by chemical analytical techniques is still a challenge. A method based on d-DNP (dissolution dynamic nuclear polarization) NMR spectroscopy to study chiral recognition was described for the first time [1]. DNP allows boosting NMR sensitivity by several orders of magnitude, overcoming one of the main limitations of NMR spectroscopy [2]. A method integrating d-DNP and 13C NMR-aided enantiodifferentiation using chiral solvating agents (CSA) was developed, in which only the chiral analyte was hyperpolarized and selectively observed by NMR. The described method enhances the sensitivity of the conventional NMR-based procedure [3] and lightens the common problem of signal overlapping between analyte and CSA. As proof on concept, racemic metabolite 13C-labeled DL-methionine was enantiodifferentiated by a single-scan 13C NMR experiment. This method entails a step forward in the chiral recognition of small molecules by NMR spectroscopy; it opens new possibilities in situations where the sensitivity is limited, for example, when low analyte concentration available or when measurement of an insensitive nucleus required. The advantages and current limitations of the method, as well as future perspectives, are discussed.

NMR could improve the detection of “date rape” drug GHB

Direct Monitoring of Exogenous γ-Hydroxybutyric Acid in Body Fluids by NMR Spectroscopy” by M. Palomino-Schätzlein, Y. Wang, A. Brailsford, T. Parella, D. Cowan, C. Legido-Quigley, M. Pérez-Trujillo. Anal. Chem., 2017, 89 (16), pp 8343–8350. DOI: http://dx.doi.org/10.1021/acs.analchem.7b01567

γ-Hydroxybutyric acid (GHB) is a popular drug increasingly associated with cases of drug-facilitated sexual assault (DFSA). Currently, expanding procedures of analysis and having forensic evidence of GHB intake in a long term are mandatory. Up to now, most studies have been performed using GC/MS and LC-MS as analytical platforms, which involve significant manipulation of the sample and, often, indirect measurements. In this work, procedures used in NMR-based metabolomics were applied to a GHB clinical trial on urine and serum. Detection, identification, and briefly quantification of the drug by NMR methods were surveyed, as well as the use of NMR-based metabolomics for the search of potential surrogate biomarkers of GHB consumption. Results demonstrated the suitability of NMR spectroscopy, as a robust nondestructive technique, to fast and directly monitor exogenous GHB in almost intact body fluids and its high potential in the search for metabolites associated with GHB intake. This initial work show some strengths of  NMR spectroscopy and standard methods routinely used in the NMR analysis of biological samples to approach the problem. These features could open up new interesting possibilities in future studies, complementing current procedures.

This work on media:   spectroscopynow.com  phys.org  / sciencedaily.com  /  canadafreepress.com / forensicmag.com  / cbinsights.com

NMR identification of monstrous mycobacterial lipids in cell wall of Mycobacterium abcessus

” Trehalose polyphleates, external cell wall lipids in Mycobacterium abcessus, are associated with the formation of clumps with cording morphology, which have been associated with virulence” by M. Llorens-Fons, M. Pérez-Trujillo, E. Julián, C. Brambilla, F. Alcaide, T. F. Byrd and M. Luquin. Frontiers in Microbiology, 2017, 8:1402. DOI: http://dx.doi.org/10.3389/fmicb.2017.01402

Mycobacterium abscessus is a reemerging pathogen that causes pulmonary diseases similar to tuberculosis, which is caused by Mycobacterium tuberculosis. When grown in agar medium, M. abscessus strains generate rough (R) or smooth colonies (S). R morphotypes are more virulent than S morphotypes. In searching for the virulence factors responsible for this difference, R morphotypes have been found to form large aggregates (clumps) that, after being phagocytozed, result in macrophage death. Furthermore, the aggregates released to the extracellular space by damaged macrophages grow, forming unphagocytosable structures that resemble cords. In contrast, bacilli of the S morphotype, which do not form aggregates, do not damage macrophages after phagocytosis and do not form cords. Cording has also been related to the virulence of M. tuberculosis. A comparative study of the pattern and structure of mycolic acids was performed on R (cording) and S (non-cording) morphotypes derived from the same parent strains, and no differences were observed between morphotypes. Furthermore, cords formed by R morphotypes were disrupted with petroleum ether (PE), and the extracted lipids were analyzed by thin layer chromatography, nuclear magnetic resonance spectroscopy and mass spectrometry. Substantial amounts of trehalose polyphleates (TPP) were recovered as major lipids from PE extracts, and images obtained by transmission electron microscopy suggested that these lipids are localized to the external surfaces of cords and R bacilli. The structure of M. abscessus TPP was revealed to be similar to those previously described in Mycobacterium smegmatis. Although the exact role of TPP is unknown, our results demonstrated that TPP are not toxic by themselves and have a function in the formation of clumps and cords in M. abscessus, thus playing an important role in the pathogenesis of this species.


Removal of pharmaceuticals from hospital wastewater by Pleurotus ostreatus. Identification of pharmaceuticals metabolites by NMR

“Preliminary evaluation of Pleurotus ostreatus for the removal of selected pharmaceuticals from hospital wastewater” by L. Palli,* F. Castellet‐Rovira, M. Pérez‐Trujillo, D. Caniani, M. Sarrà‐Adroguer, R. Gori Biotechnology Progress, 2017. DOI: http://dx.doi.org/10.1002/btpr.2520

The fungus Pleurotus ostreatus was investigated to assess its ability to remove diclofenac, ketoprofen, and atenolol in hospital wastewater. The degradation test was carried out in a fluidized bed bioreactor testing both the batch and the continuous mode. In batch mode, diclofenac disappeared in less than 24 h, ketoprofen was degraded up to almost 50% in 5 days while atenolol was not removed. In continuous mode, diclofenac and ketoprofen removals were about 100% and 70% respectively; atenolol degradation was negligible during the first 20 days but it increased up to 60% after a peak of laccase production and notable biomass growth. In order to identify the enzymatic system involved, further experiments were carried out in flasks. Two intermediates of diclofenac and ketoprofen were detected by nuclear magnetic resonance (NMR) spectroscopy. Moreover P. ostreatus was able to reduce chemical oxygen demand of the hospital wastewater which is an important advantage comparing to other fungi in order to develop a wastewater treatment process.

 

Metronomic treatment in immunocompetent preclinical glioblastoma

“Metronomic treatment in immunocompetent preclinical GL261 glioblastoma: effects of cyclophosphamide and temozolomide” by by L. Ferrer-Font,  N. Arias-Ramos, S. Lope-Piedrafita, M. Julià-Sapé , M. Pumarola, C. Arús  and A. P. Candiota. NMR Biomed. 2017. DOI: 10.1002/nbm.3748. 

Glioblastoma (GBM) causes poor survival in patients even when applying aggressive treatment. In preceding years, efforts have focused in new therapeutic regimens with conventional drugs to activate immune responses that may enhance tumor regression and prevent regrowth, as for example the “metronomic” approaches.

We have evaluated whether metronomic CPA or TMZ administration could increase survival in orthotopic GL261 in C57BL/6 mice, an immunocompetent model. Longitudinal in vivo studies with CPA (140 mg/Kg) or TMZ (range 140-240 mg/Kg) metronomic administration (every 6 days) were performed in tumor-bearing mice. Tumor evolution was monitored at 7T with T2-weighted MRI, Diffusion weighted imaging and MRSI-based nosological images of response to therapy. Obtained results demonstrated that both treatments resulted in increased survival (38.6+21.0 days, n=30) compared to control (19.4+2.4 days, n=18). Also, it was found a clear edema appearance during chemotherapeutic treatment suggesting inflammatory associated processes. The necropsy performed in mice cured from GBM after high TMZ cumulative dosage (980-1400 mg/Kg) revealed lymphoma incidence.

Long-term fertilization determines different metabolomic profiles and responses in saplings of three rainforest tree species with different adult canopy position

Long-term fertilization determines different metabolomic profiles and responses in saplings of three rainforest tree species with different adult canopy position” by  A. Gargallo-Garriga, S. J. Wright, J. Sardans, M. Pérez-Trujillo, M. Oravec, K. Večeřová,O. Urban, M. Fernández-Martínez, T. Parella, J. Peñuelas.

Plos One, 2017, 1-21. DOI: 10.1371/journal.pone.0177030

Tropical rainforests are frequently limited by soil nutrient availability. However, the response of the metabolic phenotypic plasticity of trees to an increase of soil nutrient availabilities is poorly understood. We expected that increases in the ability of a nutrient that limits some plant processes should be detected by corresponding changes in plant metabolome profile related to such processes. We studied the foliar metabolome of saplings of three abundant tree species in a 15 year field NPK fertilization experiment in a Panamanian rainforest. The largest differences were among species and explained 75% of overall metabolome variation.

Chiral Recognition by Dissolution DNP NMR Spectroscopy of 13C-Labeled DL-Methionine

“Chiral Recognition by Dissolution DNP NMR Spectroscopy of 13C-Labeled DL-Methionine” By Eva Monteagudo, Albert Virgili, Teodor Parella and Míriam Pérez-Trujillo.Anal. Chem., 2017, 89 (9), pp 4939–4944 DOI: 10.1021/acs.analchem.7b00156

A method based on d-DNP NMR spectroscopy to study chiral recognition is described for the first time. The enantiodifferentiation of a racemic metabolite in a millimolar aqueous solution using a chiral solvating agent was performed. Hyperpolarized 13C-labeled DL-methionine enantiomers were differently observed with a single-scan 13C NMR experiment, while the chiral auxiliary at thermal equilibrium remained unobserved. The method developed entails a step forward in the chiral recognition of small molecules by NMR spectroscopy, opening new possibilities in situations where the sensitivity is limited, for example, when a low concentration of analyte is available or when the measurement of an insensitive nucleus, like 13C, is required. The advantages and current limitations of the method, as well as future perspectives, are discussed.

Solving JHH measurement in overcrowded regions

Accurate measurement of JHH in overlapped signals by a TOCSY-edited SERF Experiment

André Fredi, Pau Nolis* and Teodor Parella*

Magnetic Resonance in ChemistryDOI: 10.1002/mrc.4572

Selective Refocusing (GSERF or the recent PSYCHEDELIC) experiments were originally designed to determine all proton-proton coupling constants (JHH) for a selected proton resonance. They work for isolated signals on which selective excitation can be successfully applied but, as happens in other selective experiments, fail for overlapped signals. To circumvent this limitation, a doubly-selective TOCSY-GSERF scheme is presented for the measurement of JHH in protons resonating in crowded regions. This new experiment takes advantage of the editing features of an initial TOCSY transfer to uncover hidden resonances that become accessible to perform the subsequent frequency-selective refocusing.