Tag Archives: enhanced resolution

Extraction of 1JCH for all carbon multiplicities.

“Perfect 1JCH-resolved HSQC: Efficient measurement of one-bond proton-carbon coupling constants along the indirect dimension” by Núria Marcó, A.A. Souza,  Pau Nolis, R. R. Gil and Teodor ParellaJournal of Magnetic resonance 2017, 276, 37-42. DOI: 10.1016/j.jmr.2017.01.002

A versatile 1JCH-resolved HSQC pulse scheme for the speedy, accurate and automated determination of one-bond proton-carbon coupling constants is reported. The implementation of a perfectBIRD element allows a straightforward measurement from the clean doublets obtained along the highly resolved F1 dimension, even for each individual 1JCHa and 1JCHb in diastereotopic HaCHb methylene groups. Real-time homodecoupling during acquisition and other alternatives to minimize accidental signal overlapping in overcrowded spectra are also discussed.

Pulse Programs Code for Bruker:

Data set Example:

Exploring the use of Generalized Indirect Covariance to Reconstruct Pure shift NMR Spectra: Current Pros and Cons.

JMR

Title: Exploring the use of Generalized Indirect Covariance to Reconstruct Pure shift NMR Spectra: Current Pros and Cons.
Authors: André Fredi, Pau Nolis, Carlos Cobas, Gary E. Martin and Teodor Parella.
DOI: 10.1016/j.jmr.2016.03.003

ABSTRACT: The current pros and cons of a processing protocol to generate pure chemical shift NMR spectra using Generalized Indirect Covariance are presented and discussed. The transformation of any standard 2D homonuclear and heteronuclear spectrum to its pure shift counterpart by using a reference DIAG spectrum is described. Continue reading Exploring the use of Generalized Indirect Covariance to Reconstruct Pure shift NMR Spectra: Current Pros and Cons.

PhD Thesis: Development and application of modern pure shift NMR techniques and improved HSQC and HSQMBC experiments

Last 16st July 2015 I defended my PhD Thesis entitled: Development and application of modern pure shift NMR techniques and improved HSQC/HSQMBC experiments.

Presentación1

The present doctoral thesis is framed within the Nuclear Magnetic Resonance (NMR) spectroscopy field, more specifically in the design of modern NMR methodologies. The research work carried out is focused on the design and application of new and modern NMR methodologies (i) to perform efficient broadband 1H homodecoupling in 1D/2D NMR experiments and (ii) to accurately determine homo- and heteronuclear coupling constants in isotropic and anisotropic conditions through improved HSQC and HSQMBC-type experiments. The thesis is presented as a compendium ten (10) publications that have been published in several peer-reviewed international scientific journals as original research papers. Continue reading PhD Thesis: Development and application of modern pure shift NMR techniques and improved HSQC and HSQMBC experiments

Ultra-high-resolved NMR: Analysis of complex mixtures of compounds with near-identical 1H and 13C NMR spectra

Title: cover7Disentangling complex mixtures of compounds with near-identical 1H and 13C NMR spectra using pure shift NMR.
Authors: L. Castañar, R. Roldán, P. Clapés, A. Virgili and T. Parella.
Reference: Chem. Eur. J., 2015, 21, 7682-7685.
DOI: 10.1002/chem.201500521

 

Abstract: The thorough analysis of highly complex NMR spectra using pure shift NMR experiments is  described. The enhanced spectral resolution obtained from modern 2D HOBS experiments incorporating spectral aliasing in the 13C indirect dimension enables the distinction of similar compounds exhibiting near-identical 1H and 13C NMR spectra. It is shown that a complete set of extremely small Δδ(1H) and Δδ(13C) values, even below the natural line width (1 and 5 ppb, respectively), can be simultaneously determined and assigned.

a

References:

 

Pulse Programs Code for Bruker:

Data set Example:

 

PhD Thesis by Laura Castañar: Pulse Programs and Data Set Examples

Development and application of modern pure shift NMR techniques and improved HSQC/HSQMBC experiments

Presentación1

In the following links one can find Data Set Examples of each Publication presented in the Thesis Work, as well as the corresponding Pulse Program Code for Bruker. All 2D spectra have been previously phased and 2ii, 2ir, and 2ri files removed, otherwise data sets would be too big. Continue reading PhD Thesis by Laura Castañar: Pulse Programs and Data Set Examples

Review – Pure shift NMR experiments: recent developments, methods and applications

MRC_teo copy“Broadband 1H homodecoupled NMR experiments: recent developments, methods and applications” by Laura Castañar and Teodor Parella. Magnetic Resonance in Chemistry, 2015. DOI: 10.1002/mrc.4238

In recent years, a great interest in the development of new broadband 1H homonuclear decoupled techniques providing simplified JHH multiplet patterns has emerged again in the field of small molecule NMR. The resulting highly resolved 1H NMR spectra display resonances as collapsed singlets, therefore minimizing signal overlap and expediting spectral analysis. This review aims at presenting the most recent advances in pure shift NMR spectroscopy, with a particular emphasis to the Zangger–Sterk experiment. Continue reading Review – Pure shift NMR experiments: recent developments, methods and applications

SeRMN presentations at the 2014 Ibero-American NMR & GERMN Bienal & Iberian NMR meeting

Imagen1Some of our last research work will be presented next week at the VI Ibero-American NMR – VII GERMN Bienal – IV Iberian NMR joint meeting that will take place in Alcalá de Henares, Madrid (Spain) from 22nd to 25th September. Find below a summary of our contributions.

Laura Castañar presents an oral communication and a poster entitled “Enantiodifferentiation throgh frequency-selective pure shift 1H NMR”.  NMR-aided discrimination of enantiomers using chiral solvating agents (CSAs) is a well established method to carry out enantiodifferentiation studies. Continue reading SeRMN presentations at the 2014 Ibero-American NMR & GERMN Bienal & Iberian NMR meeting

Simultaneous 1H and 13C NMR enantiodifferentiation from highly-resolved pure shift HSQC spectra

CoverIssue“Simultaneous 1H and 13C NMR enantiodifferentiation from highly-resolved pure shift HSQC spectra” by Miriam Pérez-Trujillo, Laura Castañar, Eva Monteagudo, Lars T. Kuhn, Pau Nolis, Albert Virgili, R. Thomas Williamson and Teodor Parella. Chemical Communications  50:10214-10217 (2014). DOI: 10.1039/C4CC04077E

NMR-aided discrimination of enantiomers using chiral solvating agents (CSAs) is a well established method of enantiodifferentiation and measurement of enantiomeric ratios (er). The analysis is traditionally performed by observing chemical shift differences (ΔΔδ) in 1H signals by conventional 1D 1H NMR spectra. However, low ΔΔδ values and signal overlap caused by complex multiplets lead to the lack of spectral signal dispersion that preclude a straightforward analysis. Continue reading Simultaneous 1H and 13C NMR enantiodifferentiation from highly-resolved pure shift HSQC spectra

HOBS experiments to measure T1/T2 relaxation times in overlapped regions

S10907807“Measurement of T1/T2 relaxation times in overlapped regions from homodecoupled 1H singlet signals” by Laura Castañar, Pau Nolis, Albert Virgili and Teodor Parella. Journal of Magnetic Resonance 244 (2014) 30-35. DOI: 10.1016/j.jmr.2014.04.003

The implementation of the HOmodecoupled Band-Selective (HOBS) technique in the conventional Inversion-Recovery and CPMG-based PROJECT experiments is described. The achievement of fully homodecoupled signals allows the distinction of overlapped 1H resonances with small chemical shift differences. It is shown that the corresponding T1 and T2 relaxation times can be individually measured from the resulting singlet lines using conventional exponential curve-fitting methods. Continue reading HOBS experiments to measure T1/T2 relaxation times in overlapped regions

HOBS Applications

SeRMN seminar

  • Date:  Friday 28th March, 2014
  • Hour: 12 am
  • Location:  SeRMN,  Facultats de Ciències i Biociències, C2/-135
  • Speaker:  Laura Castañar, SeRMN PhD Student & Teaching Assistant, Dept. of Chemistry.

HOBS Applications (27-03-2014)

Several NMR applications using HOmodecouped Band-Selective NMR experiments [1] are proposed. The easy implementation of this HOBS scheme as a general building block into a great variety of multidimensional NMR experiments leads to pure-shift spectra with enhanced resolution and with the maximum attainable sensitivity. In this talk is presented the application of HOBS for measuring direct [1] and long-range [2] heteronuclear coupling constants. Also the use of HOBS experiments to enantiodiscrimination studies are presented [3].

Reference:

[1] “Full sensitivity and enhanced resolution in homodecoupled band-selective NMR experiments” by L. Castañar, P. Nolis, A. Virgili and T. ParellaChem. Eur. J. 2013, 19, 17283-17286. DOI: 10.1002/chem.201303235

[2]Implementing homo- and heterodecoupling in region-selective HSQMBC experiments” by Laura CastañarJosep Sauri, Pau Nolis,Albert Virgili and Teodor ParellaJournal of Magnetic Resonance,2014, 238, 63-69.  DOI:10.1016/j.jmr.2013.10.022
 
[3] “Enantiodifferentiation through Frequency-Selective Pure-Shift 1H Nuclear Magnetic Resonance Spectroscopy” by Laura CastañarMíriam Pérez-Trujillo, Pau Nolis, Eva MonteagudoAlbert Virgili and Teodor ParellaChemPhysChem, 2014. DOI: 10.1002/cphc.201301130

Continue reading HOBS Applications