Our former PhD student Kumar Motiram has been awarded an extraordinary prize by the Department of Chemistry for his PhD thesis entitled “Advances in NMR spectroscopic methodology and applications: time-efficient methods, ultra long-range heteronuclear correlation experiments and enantiospecific analysis of complex mixtures” that he defended on October 2021.
The Doctoral Commission, meeting on 20 June 2023, has awarded the extraordinary prize for theses of the doctoral programme in Chemistry defended during the academic year 2021-22… (News from the Department of Chemistry, UAB).
His thesis goals were i) the development of Nuclear Magnetic Resonance (NMR) experiments focused on efficiency in terms of time the ii) establishing new pulse sequences that facilitate the study of long-distance coupling constants fundamental for structural elucidation, iii) the development of a reliable method that allows the differentiated analysis of enantiomers (enantiospecific) directly from its original mixture (in situ) and from multiple molecules simultaneously (multicomponent).
We are recruiting an Early Stage Researcher to work on a decision-support system based on MRSI data at 3T, for glioblastoma therapy response follow- up, as part of the INSPiRE-MED European project.
We seek a highly motivated and qualified individual as Early Stage Researcher for a three-year applied research project. The successful candidate will contribute to the development of advanced biomedical research tools in the field of Magnetic Resonance Spectroscopy and Imaging, and its application to the clinical day-to-day practice.
Project description: This position is one of the 15 ESR positions of the INSPiRE-MED European Training Network, which focuses on the development of Magnetic Resonance Spectroscopy (MRS) and MR Spectroscopic Imaging (MRSI) combined with Positron Emission Tomography (PET), enhanced by machine learning techniques.
The main aim of the PhD project (ESR12) will be development of a Machine Learning medical decision-support system based on MRSI data at 3T, for glioblastoma therapy response follow-up.
The
ESR will develop a novel medical decision support system (MDSS)
focused on glioblastoma therapy response follow-up, based on magnetic
resonance spectroscopic imaging (MRSI) data, able to take and process
data from multiple MRSI formats and centres. For each patient’s
MRSI, the MDSS should deliver a nosological or classification image,
ready to be fused with images of other MR modalities from the same
patient. The DSS will be integrated into the interface of the
academic version of jMRUI, in a way that allows clinicians evaluate
the system with their data. An important part of of the project will
be the incorporation of automated MRSI artifact detection and removal
tools.
Official call by Universitat Autònoma de Barcelona
Deadline for submissions: 21/5/2019 at 23:00
See UAB and/or Euraxess advertisements for further information about the position and how to apply.
We are recruiting an Early Stage Researcher to work on the implementation of high-resolution MRSI methods in a pre-clinical scanner as part of the INSPiRE-MED European project.
We seek a highly motivated and qualified individual as Early Stage Researcher for a three-year applied research project. The successful candidate will contribute to the development of advanced biomedical research tools in the field of Magnetic Resonance Spectroscopy and Imaging, and its application to the clinical day-to-day practice.
Project description: This position is one of the 15 ESR positions of the INSPiRE-MED European Training Network, which focuses on the development of Magnetic Resonance Spectroscopy (MRS) and MR Spectroscopic Imaging (MRSI) combined with Positron Emission Tomography (PET), enhanced by machine learning techniques.
The main aim of the PhD project (ESR4) will be the implementation of innovative high spatial resolution MRSI methods in a pre-clinical scanner. The ultimate goal will be the validation of optimal methods for improving imaging biomarker development of brain tumour in longitudinal studies of therapy response in mouse glioblastoma models. The project will involve evaluation of the methodology performance limits, repeatability and reproducibility compared to stock Bruker Biospec MRSI sequences and the assessment of speed-up MRSI methods in a 7-Tesla pre-clinical scanner.
We are recruiting an Early Stage Researcher to work on a decision-support system based on MRSI data at 3T, for glioblastoma therapy response follow- up,as part of the INSPiRE-MED European project.
We seek a highly motivated and qualified individual as Early Stage Researcher for a three-year applied research project. The successful candidate will contribute to the development of advanced biomedical research tools in the field of Magnetic Resonance Spectroscopy and Imaging, and its application to the clinical day-to-day practice.
Project description: This position is one of the 15 ESR positions of the INSPiRE-MED European Training Network, which focuses on the development of Magnetic Resonance Spectroscopy (MRS) and MR Spectroscopic Imaging (MRSI) combined with Positron Emission Tomography (PET), enhanced by machine learning techniques.
The main aim of the PhD project (ESR12) will be development of a Machine Learning medical decision-support system based on MRSI data at 3T, for glioblastoma therapy response follow-up.
The
ESR will develop a novel medical decision support system (MDSS)
focused on glioblastoma therapy response follow-up, based on magnetic
resonance spectroscopic imaging (MRSI) data, able to take and process
data from multiple MRSI formats and centres. For each patient’s
MRSI, the MDSS should deliver a nosological or classification image,
ready to be fused with images of other MR modalities from the same
patient. The DSS will be integrated into the interface of the
academic version of jMRUI, in a way that allows clinicians evaluate
the system with their data. An important part of of the project will
be the incorporation of automated MRSI artifact detection and removal
tools.
Simões, Rui V., Miquel E. Cabañas, Carla Loreiro, Miriam Illa, Fatima Crispi & Eduard Gratacós. 2018. Assessment of prenatal cerebral and cardiac metabolic changes in a rabbit model of fetal growth restriction based on 13C-labelled substrate infusions and ex vivo multinuclear HRMAS. PLOS ONE 13(12). e0208784. DOI: 10.1371/journal.pone.0208784
Background: We have used a previously reported rabbit model of fetal growth restriction (FGR), reproducing perinatal neurodevelopmental and cardiovascular impairments, to investigate the main relative changes in cerebral and cardiac metabolism of term FGR fetuses during nutrient infusion.
Methods: FGR was induced in 9 pregnant New Zealand rabbits at 25 days of gestation: one horn used as FGR, by partial ligation of uteroplacental vessels, and the contralateral as control (appropriate for gestation age, AGA). At 30 days of gestation, fasted mothers under anesthesia were infused i.v. with 1-13C-glucose (4 mothers), 2-13C-acetate (3 mothers), or not infused (2 mothers). Fetal brain and heart samples were quickly harvested and frozen down. Brain cortex and heart apex regions from 30 fetuses were studied ex vivo by HRMAS at 4°C, acquiring multinuclear 1D and 2D spectra. The data were processed, quantified by peak deconvolution or integration, and normalized to sample weight.
We are recruiting an Early Stage Researcher to work on the implementation of high-resolution MRSI methods in a pre-clinical scanner as part of the INSPiRE-MED European project.
We seek a highly motivated and qualified individual as Early Stage Researcher for a three-year applied research project. The successful candidate will contribute to the development of advanced biomedical research tools in the field of Magnetic Resonance Spectroscopy and Imaging, and its application to the clinical day-to-day practice.
Project description: This position is one of the 15 ESR positions of the INSPiRE-MED European Training Network, which focuses on the development of Magnetic Resonance Spectroscopy (MRS) and MR Spectroscopic Imaging (MRSI) combined with Positron Emission Tomography (PET), enhanced by machine learning techniques.
The main aim of the PhD project (ESR4) will be the implementation of innovative high spatial resolution MRSI methods in a pre-clinical scanner. The ultimate goal will be the validation of optimal methods for improving imaging biomarker development of brain tumour in longitudinal studies of therapy response in mouse glioblastoma models. The project will involve evaluation of the methodology performance limits, repeatability and reproducibility compared to stock Bruker Biospec MRSI sequences and the assessment of speed-up MRSI methods in a 7-Tesla pre-clinical scanner.
Integrating Magnetic Resonance Spectroscopy and Multimodal Imaging for Research and Education in MEDicine (INSPiRE-MED) is an European research project awarded in the call H2020-MSCA-ITN-2018, of the MSCA-ITN-ETN – European Training Networks, to a consortium of partners including the GABRMN and SeRMN at UAB. The project is coordinated by Prof. Dominique Sappey-Marinier, of the Université Lyon-1 Claude-Bernard, Lyon, France. The scientist-in-charge at UAB will be Prof. Carles Arús (GABRMN), and Silvia Lope-Piedrafita (SeRMN) and Miquel Cabañas (SeRMN) will participate as senior scientists in the project.
Starting 1st of January 2019, the INSPiRE-MED Initial Training Network will investigate the theoretical and practical aspects of in vivo Magnetic Resonance Spectroscopy (MRS) and Spectroscopic Imaging (MRSI) with applications in oncology and neurology.
The network will host 15 Early Stage Researchers in the field of biomedical imaging, particularly in the field of Magnetic Resonance Spectroscopy (MRS) and MR Spectroscopic Imaging (MRSI) combined with Positron Emission Tomography (PET) and enhanced by machine learning techniques. The research training is supervised by a consortium of 12 academic partners with an established collaborative track record in R&D and 9 industrial partners from the broad and competitive preclinical and clinical imaging sector.
The main research topic to be carried at UAB —in close collaboration with other project members— will be the implementation of innovative high spatial resolution MRSI methods in a pre-clinical scanner. The ultimate goal will be the validation of optimal methods for improving imaging biomarker development of brain tumour in longitudinal studies of therapy response in mouse glioblastoma models.
Last December, Esperança Ramírez, our facility secretary, defended her PhD Thesis entitled: “Edició crítica dels escolis al cant IX de l’Odissea” (Critical Edition of the Scholia to the Odyssey Book IX). The thesis defense took place at 11am on Friday 16 December in the Facultat de Filosofia i Lletres of Universitat Autònoma de Barcelona.
Scholia (singular scholium or scholion, from Ancient Greek: σχόλιον, “comment, interpretation”) are grammatical, critical, or explanatory comments, either original or extracted from pre-existing commentaries, which are inserted on the margin of the manuscript of an ancient author, as glosses. Scholia definition in the Wikipedia
In her doctoral dissertation she does a thorough, critical and updated edition of the scholia to the Odyssey Book IX, including the scholia regarded as minor as well as the major scholia. This book and the following three books are collectively referred to as the apologoi: Odysseus’ “stories”, and they have attracted the attention of scholars of Homer works of all times.
To carry out her research work, she had to systematically analyse and challenge previous editions that, in full or in part, included scholia from the Odyssey Book IX, and, on the other hand, she had to decide the corpus of manuscripts that she would study, which was finally set to 37 from different typologies and genetic filiations.
It stands out the methodological novelty of classifying the scholia according to their content: related to the titles, dedicated to argument summaries, focused on lexicographic aspects, contextual or mythographic. This classification, on top of helping to understand the content of each scholium, offers too an interesting view of the filiation of manuscripts.
Her goal was to offer a body of data encompassing the scholia, the annotations and also the most significant corrections of the Homeric text. In that corpus there are several types of content, from multiple versions of myths to words that must be construed, including syntactic expressions or morphological annotations.