Chiral Recognition by Dissolution DNP NMR Spectroscopy of 13C-Labeled DL-Methionine

“Chiral Recognition by Dissolution DNP NMR Spectroscopy of 13C-Labeled DL-Methionine” By Eva Monteagudo, Albert Virgili, Teodor Parella and Míriam Pérez-Trujillo.. Anal Chem, 2017. DOI: 10.1021/acs.analchem.7b00156

A method based on d-DNP NMR spectroscopy to study chiral recognition is described for the first time. The enantiodifferentiation of a racemic metabolite in a millimolar aqueous solution using a chiral solvating agent was performed. Hyperpolarized 13C-labeled DL-methionine enantiomers were differently observed with a single-scan 13C NMR experiment, while the chiral auxiliary at thermal equilibrium remained unobserved. The method developed entails a step forward in the chiral recognition of small molecules by NMR spectroscopy, opening new possibilities in situations where the sensitivity is limited, for example, when a low concentration of analyte is available or when the measurement of an insensitive nucleus, like 13C, is required. The advantages and current limitations of the method, as well as future perspectives, are discussed.


Presentació Software RMN Mnova (Mestrelab)

Esteu convidats a la presentació del software Mnova (Mestrelab Research) el proper dimecres 1 de Març a l’aula C1/009, de 15:30 a 17:30. És una eina de gran utilitat per qualsevol químic interessat en el processament/manipulació rutinàri/a de  dades de RMN (i altres tècniques analítiques) d’una manera ràpida, eficient i molt intuitiva. Es presentarà les novetats més importants de la nova versió Mnova11 així com es resoldrà qualsevol qüestió pràctica que es plantegi.

You are invited to the presentation of the new Mnova software package (Mestrelab Research) on Wednesday March 1st in class C1 /009, from 15:30 to 17:30. It is a useful tool for any chemist interested in processing / handling routine NMR data (and other analytical techniques) in an efficient and intuitive way. The most important developments of the new version Mnova11 will be presented and practical question of interest will be discussed.

Neonatal handling enduringly decreases anxiety and stress responses

“Neonatal handling enduringly decreases anxiety and stress responses and reduces hippocampus and amygdala volume in agenetic model of differential anxiety: Behavioral-volumetric associations in the Roman rats trains” by C. Río-Álamos, I. Oliveras, M. A. Piludu, C. Gerbolés, T. Cañete, G. Blázquez, S. Lope-Piedrafita, E. Martínez-Membrives, R. Torrubia, A. Tobeña, and A. Fernández-Teruel. European Neuropsychopharmacology, 2017,  27: 146–158. DOI: 10.1016/j.euroneuro.2016.12.003

The hippocampus and amygdala have been proposed as key neural structures related to anxiety. A more active hippocampus/amygdala system has been related to greater anxious responses in situations involving conflict/novelty. The Roman Low- (RLA) and High-avoidance (RHA) rat strains constitute a genetic model of differential anxiety. Relative to RHA rats, RLA rats exhibit enhanced anxiety/fearfulness, augmented hippocampal/amygdala c-Fos expression following exposure to novelty/conflict, increased hippocampal neuronal density and higher endocrine responses to stress. Neonatal handling (NH) is an environmental treatment with long-lasting anxiety/stress-reducing effects in rodents. Since hippocampus and amygdala volume are supposed to be related to anxiety/fear, it was hypothesized  a greater volume of both areas in RLA than in RHA rats, as well as that NH treatment would reduce anxiety and the volume of both structures. Adult untreated and NH-treated RHA and RLA rats were tested for anxiety, sensorimotor gating (PPI), stress-induced corticosterone and prolactin responses, two-way active avoidance acquisition and in vivo 7 T 1H-Magnetic resonance image.

As expected, untreated RLA rats showed higher anxiety and post-stress hormone responses, as well as greater hippocampus and amygdala volumes than untreated RHA rats. NH decreased anxiety/stress responses, especially in RLA rats, and significantly reduced hippocampus and amygdala volumes in this strain. Dorsal striatum volume was not different between the strains nor it was affected by NH. Finally, there were positive associations (as shown by correlations, factor analysis and multiple regression) between anxiety and PPI and hippocampus/amygdala volumes.

Transgenic mouse model of schizophrenia

“Mutation of the 3-Phosphoinositide-Dependent Protein Kinase 1
(PDK1) Substrate-Docking Site in the Developing Brain Causes
Microcephaly with Abnormal Brain Morphogenesis Independently of
Akt, Leading to Impaired Cognition and Disruptive Behaviors”
by Lluís Cordón-Barris, Sònia Pascual-Guiral, Shaobin Yang, Lydia Giménez-Llort, Silvia Lope-Piedrafita, Carlota Niemeyer, Enrique Claro, Jose M. Lizcano, and Jose R. Bayascas. Mol Cell Biol (2016), 36:2967–2982. DOI:10.1128/MCB.00230-16.

This report shows the involvement of PDK1 downstream effectors other than Akt in mouse neuropsychiatric-like disorders, with potential face and construct validity for negative and cognitive symptoms of schizophrenia. Results point to a prominent function for PIF pocket-dependent kinases as major effectors of this signaling hub downstream of Akt in the etiopathogenesis of schizophrenia that might provide construct validity to the PDK1 L155E mutants.

The phosphoinositide (PI) 3-kinase/Akt signaling pathway plays essential roles during neuronal development. 3-Phosphoinositide-dependent protein kinase 1 (PDK1) coordinates the PI 3-kinase signals by activating 23 kinases of the AGC family, includingAkt. Phosphorylation of a conserved docking site in the substrate is a requisite for PDK1 to recognize, phosphorylate, and activate most of these kinases, with the exception of Akt. This differential mechanism of regulation it has been exploited by generating neuron-specific conditional knock-in mice expressing a mutant form of PDK1, L155E, in which the substrate-docking site binding motif, termed the PIF pocket, was disrupted. As a consequence, activation of all the PDK1 substrates tested except Akt was abolished. The mice exhibited microcephaly, altered cortical layering, and reduced circuitry, leading to cognitive deficits and exacerbated disruptive behavior combined with diminished motivation. The abnormal patterning of the adult brain arises from the reduced ability of the embryonic neurons to polarize and extend their axons, highlighting the essential roles that the PDK1 signaling beyond Akt plays in mediating the neuronal responses that regulate brain development.

Ruthenium complexes studied by NMR

Mononuclear ruthenium compounds bearing N-donor and N-heterocyclic carbene ligands: structure and oxidative catalysis
Hai Jie Liu,   M. Gil-Sepulcre,   L. Francás,   P. Nolis,   T. Parella,   J. Benet-Buchholz,   X. Fontrodona,   J. García-Antón,   N. Romero,   A. Llobet,   Ll. Escriche,   R. Bofill and   X. Sala
Dalton Trans., 2017, Accepted Manuscript

DOI: 10.1039/C6DT04729G

ABSTRACT A new CNNC carbene-phthalazine tetradentate ligand has been synthesised, which under reaction with [Ru(T)Cl3] (T = trpy, tpm, bpea; trpy = 2,2′;6′,2″-terpyridine; tpm = tris(pyrazol-1-yl)methane; bpea = N,N-bis(pyridin-2-ylmethyl)ethanamine) in MeOH or iPrOH undergoes a C-N bond scission due to the nucleophilic attack of a solvent molecule, with the subsequent formation of the mononuclear complexes cis-[Ru(PhthaPz-OR)(trpy)X]n+, [Ru(PhthaPz-OMe)(tpm)X]n+ and trans,fac-[Ru(PhthaPz-OMe)(bpea)X]n+ (X = Cl, n = 1; X = H2O, n = 2; PhthaPz-OR = 1-(4-alkoxyphthalazin-1-yl)-3-methyl-1H-imidazol-3-ium), named 1a+/2a2+ (R = Me), 1b+/2b2+ (R = iPr), 3+/42+ and 5+/62+, respectively. Interestingly, regulation of the stability regions of the different Ru oxidation states is obtained by the different ligand combinations, going from 62+, where Ru(III) is clearly stable and mono-electronic transfers are favoured, to 2a2+/2b2+, where Ru(III) is almost unstable with regards to its disproportion. The catalytic performance of the Ru-OH2 complexes in chemical water oxidation at pH 1.0 points to poor stability (ligand oxidation), with subsequent evolution of CO2 together with O2, especially for 42+ and 62+. In electrochemically driven water oxidation, the highest TOF values are obtained for 2a2+ at pH 1.0. In alkene epoxidation, complexes favouring bi-electronic transfer processes show better performances and selectivities than those favouring mono-electronic transfers, while alkenes containing electron-donor groups promote better performances than those bearing electron-withdrawers. Finally, when cis-β-methylstyrene is employed as substrate, no cis/trans isomerization takes place, thus indicating the existence of a stereospecific process.

Discrimination of stereoisomers with RDCs

“Structural discrimination from in-situ measurement of 1DCH and 2DHH RDCs” by Núria Marcó,  R. R. Gil and Teodor Parella. Magnetic Resonance in Chemistry 2017, DOI: 10.1002/mrc.4575

A fast RDC-assisted strategy involving the simultaneous determination of scalar and total coupling constants from a single 1JCH/2JHH-resolved NMR spectrum is reported. It is shown that the concerted use of the directly measured 1DCH (for all CHn multiplicities) and 2DHH residual dipolar couplings allows an on-the-fly assignment of diastereotopic CH2 protons, as well as of an efficient discrimination between all eight possible diastereoisomeric structures of strychnine, which contains six stereocenters.

Pulse Programs Code for Bruker:

Data set Example:

Extraction of 1JCH for all carbon multiplicities.

“Perfect 1JCH-resolved HSQC: Efficient measurement of one-bond proton-carbon coupling constants along the indirect dimension” by Núria Marcó, A.A. Souza,  Pau Nolis, R. R. Gil and Teodor ParellaJournal of Magnetic resonance 2017, 276, 37-42. DOI: 10.1016/j.jmr.2017.01.002

A versatile 1JCH-resolved HSQC pulse scheme for the speedy, accurate and automated determination of one-bond proton-carbon coupling constants is reported. The implementation of a perfectBIRD element allows a straightforward measurement from the clean doublets obtained along the highly resolved F1 dimension, even for each individual 1JCHa and 1JCHb in diastereotopic HaCHb methylene groups. Real-time homodecoupling during acquisition and other alternatives to minimize accidental signal overlapping in overcrowded spectra are also discussed.

Pulse Programs Code for Bruker:

Data set Example:

New interface to visualize and determine 1JCH

 1JCH NMR Profile: Identification of key structural features and functionalities by visual observation and direct measurement of one-bond proton-carbon coupling constants” by Núria Marcó, A.A. Souza,  Pau Nolis, Carlos Cobas, R. R. Gil and Teodor ParellaJournal of Organic Chemistry 2017, 276 : 37.42. DOI: 10.1021/acs.joc.6b02873 

A user-friendly NMR interface for the visual and accurate determination of experimental one-bond proton-carbon coupling constants (1JCH) in small molecules is presented. This intuitive 1JCH profile correlates directly delta(1H) and 1JCH facilitates the rapid identification and assignment of 1H signals belonging to key structural elements and functional groups. Illustrative examples are provided for some target molecules including terminal alkynes, strained rings, electronegative substituents or lone-pair bearing heteronuclei.



PhD Thesis: Edició crítica dels escolis al cant IX de l’Odissea, by Esperança Ramírez Sevilla

Last December, Esperança Ramírez, our facility secretary, defended her PhD Thesis entitled: “Edició crítica dels escolis al cant IX de l’Odissea” (Critical Edition of the Scholia to the Odyssey Book IX). The thesis defense took place at 11am on Friday 16 December in the Facultat de Filosofia i Lletres of Universitat Autònoma de Barcelona.

Scholia (singular scholium or scholion, from Ancient Greek: σχόλιον, “comment, interpretation”) are grammatical, critical, or explanatory comments, either original or extracted from pre-existing commentaries, which are inserted on the margin of the manuscript of an ancient author, as glosses.
Scholia definition in the Wikipedia

In her doctoral dissertation she does a thorough, critical and updated edition of the scholia to the Odyssey Book IX, including the scholia regarded as minor as well as the major scholia. This book and the following three books are collectively referred to as the apologoi: Odysseus’ “stories”, and they have attracted the attention of scholars of Homer works of all times.

To carry out her research work, she had to systematically analyse and challenge previous editions that, in full or in part, included scholia from the Odyssey Book IX, and, on the other hand, she had to decide the corpus of manuscripts that she would study, which was finally set to 37 from different typologies and genetic filiations.

Odyssey greek manuscript
Example of a handwritten manuscript studied in this thesis, the text of the Odyseey is on the left column, major scholia (comments) are on the right column, and minor scholia are interspersed in between the lines of the Odyssey text.

It stands out the methodological novelty of classifying the scholia according to their content: related to the titles, dedicated to argument summaries, focused on lexicographic aspects, contextual or mythographic. This classification, on top of helping to understand the content of each scholium, offers too an interesting view of the filiation of manuscripts.

Her goal was to offer a body of data encompassing the scholia, the annotations and also the most significant corrections of the Homeric text. In that corpus there are several types of content, from multiple versions of myths to words that must be construed, including syntactic expressions or morphological annotations.

The thesis is available for download from TESEO, the official repository of Spanish doctoral dissertations.

A translation of the Odyssey to English by A.T. Murray (1919) can be read on-line at the Classical Texts Library and another translation by Samuel Butler at The Internet Classics Archive. Also, if you are curious, you can hear how Homer’s Odyssey sounded in the original ancient greek, and if you dare so, you can take a free 64-lessons course to learn ancient greek.

Solving JHH measurement in overcrowded regions

Accurate measurement of JHH in overlapped signals by a TOCSY-edited SERF Experiment

André Fredi, Pau Nolis* and Teodor Parella*

Magnetic Resonance in ChemistryDOI: 10.1002/mrc.4572

Selective Refocusing (GSERF or the recent PSYCHEDELIC) experiments were originally designed to determine all proton-proton coupling constants (JHH) for a selected proton resonance. They work for isolated signals on which selective excitation can be successfully applied but, as happens in other selective experiments, fail for overlapped signals. To circumvent this limitation, a doubly-selective TOCSY-GSERF scheme is presented for the measurement of JHH in protons resonating in crowded regions. This new experiment takes advantage of the editing features of an initial TOCSY transfer to uncover hidden resonances that become accessible to perform the subsequent frequency-selective refocusing.