Category Archives: News from the SeRMN

News about the SeRMN that do not fit in any other of the available categories.

SeRMN contribution to SMASH Small Molecule NMR Conference

Kumar Motiram-Corral is presenting at SMASH 2021 Conference a talk entitled In situ Enantiospecific Detection of Multiple Metabolites in Mixtures using NMR Spectroscopy, related to some of our recent research work. The presentation will be 1st of September in the section “Unveiling the Unknown – New Methods in Structure Elucidation“.

L. T. Kuhn, K. Motiram-Corral, T. J. Athersuch, T. Parella, M. Pérez-Trujillo, Angew. Chem. Int. Ed. 59 (2020) 23615.

SeRMN contribution at EUROMAR 2021 Conference

Some of our recent research work was presented at the European NMR meeting Euromar 2021 that was going to take place at Portoroz (Slovenia), but which was finally virtual from the 5th to the 8th of July 2021.

· Míriam Pérez-Trujillo presented the talk In situ Enantiospecific Detection of Multiple Metabolites in Mixtures using NMR Spectroscopy in the “Metabolomics” session. In this talk our last advances in enantiodifferentiation using NMR were shown and discussed.

To date, the enantiospecific analysis of mixtures necessarily requires prior separation of the individual components. The simultaneous enantiospecific detection of multiple chiral molecules in a mixture represents a major challenge, which would lead to a significantly better understanding of the underlying biological processes; e.g. via enantiospecifically analyzing metabolites in their native environment. Here, we report on the first in situ enantiospecific detection of a thirty-nine-component mixture. As a proof of concept, eighteen essential amino acids (AAs) at physiological concentrations were simultaneously enantiospecifically detected using NMR spectroscopy and a chiral solvating agent. This work represents a first step towards the simultaneous multicomponent enantiospecific analysis of complex mixtures, a capability that will have substantial impact on metabolism studies, metabolic phenotyping, chemical reaction monitoring, and many other fields where complex mixtures containing chiral molecules require efficient characterization.

L. T. Kuhn, K. Motiram-Corral, T. J. Athersuch, T. Parella, M. Pérez-Trujillo, Angew. Chem. Int. Ed. 59 (2020) 23615.

SeRMN contributions at 10th GERMN biennial /9th IberAmerican/7th Iberian NMR Meeting

Some of the SeRMN staff has presented our recent research work at the biannual Spanish and IberAmerican NMR meeting, 10th GERMN biennial /9th IberAmerican/7th Iberian NMR Meeting. This year it was a virtual meeting taking place from 26 to 29 April 2021.

Pau Nolis presented an oral communication entitled “Reducing experimental time using Multiple Fid Acquisition“. P. Nolis, K. Motiram-Corral, M. Pérez-Trujillo, T. Parella.

Speeding-up NMR molecular analysis is an important research field which has been continuously advancing since NMR early days. The relevant benefits are clear and evident: i) reduce analysis time per sample => reduce analysis cost; ii) gain spectrometer time to analyze new samples => improve spectrometer efficiency. Multiple FID Acquisition (MFA) strategy consists in the design of NMR pulse sequence experiments accommodating N acquisition windows, each registering different relevant structural information. This strategy is faster
than perform a traditional sequential acquisition of N separated experiments. Several design strategies and practical experiments will be shown and discussed.

Míriam Pérez-Trujillo presented an oral communication entitled “Simultaneous Enantiospecific Detection of Multiple Metabolites in Mixtures using NMR Spectroscopy“. L. T. Kuhn, K. Motiram-Corral, T. J. Athersuch, T. Parella, M. Pérez-Trujillo.

Chirality plays a fundamental role in nature, but its detection and quantification still face many limitations. To date, the enantiospecific analysis of mixtures necessarily requires prior separation of the individual components. The simultaneous enantiospecific detection of multiple chiral molecules in a mixture represents a major challenge, which would lead to a
significantly better understanding of the underlying biological processes; e.g. via enantiospecifically analyzing metabolites in their native environment. Here, we report on the first in situ enantiospecific detection of a thirty-ninecomponent mixture. As a proof of concept, eighteen essential amino acids (AAs) at physiological concentrations were simultaneously enantiospecifically detected using NMR spectroscopy and a chiral solvating agent. This work
represents a first step towards the simultaneous multicomponent enantiospecific analysis of complex mixtures, a capability that will have substantial impact on metabolism studies, metabolic phenotyping, chemical reaction monitoring, and many other fields where complex mixtures containing chiral molecules require efficient characterization.

12th Workshop on Magnetic Resonance Spectroscopy and Imaging (MRI/MRS) Applied to Laboratory Animals

Workshop dates:February 15th – 18th, 2021
Registration deadline:February 8th, 2021
Registration:  online
Capacity:Workshop limited to 4 participants (first come, first served)
Contact person:Silvia Lope-Piedrafita, PhD ()

This course combines a comprehensive series of lectures on the technology of Magnetic resonance spectroscopy and imaging (MRS/MRI) with hands-on laboratory sessions to provide practical demonstrations of key concepts and procedures for preclinical studies.

Whether you are considering MRI as a research tool in your lab or just would like to learn more about MRI, this workshop addresses practical aspects of experimental MRI with laboratory animals and provide valuable hands-on experience on a 7 Tesla Bruker BioSpec spectrometer.

See the workshop brochure for more information or contact Dr. Silvia Lope via email.

Updated NMR Equipments at the SeRMN – UAB

To improve the obsolescence of the oldest equipments, the following new NMR spectrometers have been installed/updated at the SeRMN-UAB Facility in May 2021:

  1. A new AVANCE NEO console for the existing 500 MHz NMR spectrometer, equipped with an automated ATMA accessory and a compatible cryoplatform for the current TCI cryoprobe.
  2. A New 400 MHz NMR spectrometer including a ultrashielded ASCEND magnet, automated SAMPLE-CASE sample changer, high-resolution liquid (iProbe) and solid-state (CP-MAS 4.0mm) NMR probes, and a BCU-II unit for automated sample refrigeration until 233K.

3. A New 300 MHz NMR spectrometer including a Nanobay AVANCE nanoNEO console, ultra shielded ASCEND magnet and a BBFO probe head.

4. A cooled SAMPLE-CASE sample changer and a BCU-II unit for automated sample refrigeration until 233K for the existing 600MHz NMR spectrometer

More info about the equipments and accesories can be found at the Bruker WWW site.

The purchase of these equipments has been co-financed by the Ministry of Science, Innovation, and Universities to the 2019 infrastructure call (project EQC2019-005396-P) co-financed by the European Fund for Economic and Regional Development (FEDER) through the plurirregional operating program of Spain (POPE) period 2014-2020.

22-06-2020: Updating Operation Mode in the SeRMN – UAB

From 22-6-2020, all authorized SeRMN users can make use of the self-service mode in the 250auto, 360MHz and 400MHz spectrometers, exclusively from 9AM to 5PM, using the booking program (http://sermn.uab.cat/reserves/). The experiment request service is also active for all those samples that are not recorded in self-service mode:

    Solution NMR form: http://sct.uab.cat/sermn/peticio_servei/RMN_solucio
    Solid State NMR: http://sct.uab.cat/sermn/peticio_servei/RMN_estat_soli
MRI/MRS studies (Biospec) : http://sct.uab.cat/sermn/peticio_servei/mri_mrs
    Another Request : http://sct.uab.cat/sermn/peticio_servei/altres_solicituds

At the moment, the 250robot spectrometer is reserved exclusively for this type of work.

It is very important that the following mandatory rules are respectedt
1. Self-service exclusively from 9AM to 5PM. SeRMN access is not allowed outside of this time slot as there will be no SeRMN staff.
2. Only 1 person per machine is allowed. Always respect two meters of distance separation between people.
3. It is necessary to follow the established protocols of hygiene and safety at a personal level (mask, hand disinfection …)
4. Before and, above all, after using the keyboard and other tools to carry out the experiments (spinner, calibrator …) it is necessary to disinfect them with the hygiene material that you will find available.

Any questions or clarifications, you can contact the staff of the SeRMN who will be present from 9AM to 5PM or through the address .

COVID-19: Reobrim el SeRMN-UAB el dilluns 25 de Maig /Reopening the NMR Service from Monday 25th May

Després de més de dos mesos d’obligat tancament, el SeRMN reobrirà les seves instal.lacions a partir del proper dilluns dia 25 de Maig. Ja que s’han de mantenir certes precaucions de seguretat i higiene, començarem amb un funcionament limitat, provisional i progressiu a mida que es vagi normalitzant la situació del COVID19. Les normes bàsiques de funcionament són:

1. No hi ha autoservei. No cal fer reserva en el nostre sistema de reserves com es fa habitualment. Les mostres seran analitzades exclusivament pel personal del SeRMN.

2. Prèviament, cal fer una sol.licitud de prestació de servei per a cada mostra a través dels formularis de la nostra plana web:

    Sol.licitud RMN en solució : http://sct.uab.cat/sermn/peticio_servei/RMN_solucio
    RMN en estat sòlid : http://sct.uab.cat/sermn/peticio_servei/RMN_estat_solid
    Estudis MRI/MRS (Biospec) : http://sct.uab.cat/sermn/peticio_servei/mri_mrs
Altra Sol.licitud : http://sct.uab.cat/sermn/peticio_servei/altres_solicituds

3. Pels usuaris que treballin a l’edifici de les Facultats de Ciències i Biociències, cal portar la mostra presencialment al SeRMN en horari de matí (9AM-1PM). És important que la mostra estigui ben etiquetada i prèviament desinfectada. L’accés al SeRMN està restringit. Just a l’entrada del SeRMN hi haurà una taula de recepció per desinfectar/deixar/recuperar les mostres (veure http://sct.uab.cat/sermn/sample_delivery_provisional).

4. Degut a l’accés restringit que hi ha a l’edifici de les Facultats de Ciències i Biociències, recomanen als usuaris externs sense autorització d’accés a l’edifici (altres facultats de la UAB, instituts i empreses del PRUAB, i instituts i empreses externes al PRUAB) que es posin en contacte amb el personal del SeRMN per email o per telèfon (93 581 3785 o al 93 581 2291) per concretar el lliurament/recollida de mostres.

Per qualsevol dubte o qüestió, podeu contactar-nos a través del nostre mail institucional () o en els nostres correus personals.

————————————————————————————————————————–

After more than two months of forced closure, the SeRMN will reopen its facilities from next Monday, May 25. Since certain safety and hygiene precautions must be maintained, we will start with a limited, provisional and progressive operation as the COVID-19 situation normalizes. The basic rules of operation are:

1-. There is no self-service. There is no need to make a reservation in our booking system as usual. Samples will be analyzed exclusively by the SeRMN staff.

2-. Previously, a request for service for each sample through the forms on our website is required:

    Solution NMR form: http://sct.uab.cat/sermn/peticio_servei/RMN_solucio
    Solid State NMR: http://sct.uab.cat/sermn/peticio_servei/RMN_estat_soli
MRI/MRS studies (Biospec) : http://sct.uab.cat/sermn/peticio_servei/mri_mrs
    Another Request : http://sct.uab.cat/sermn/peticio_servei/altres_solicituds

3.- For users working in the building of the Faculties of Sciences and Biosciences, the sample must be brought in person at the SeRMN in the morning (9 AM-1PM). It is important that the sample is well labeled and previously disinfected. The access to the SeRMN lab is restricted. Right at the entrance of the SeRMN there will be a reception table where you must disinfect / leave / recover your samples (see http://sct.uab.cat/sermn/sample_delivery_provisional).

4. Due to the restricted access to the building of the Faculties of Sciences and Biosciences, we strongly recommend to external users without authorization access to the building (other faculties of the UAB, institutes and companies of the PRUAB, and institutes and companies external to the PRUAB) that contact with the staff of the SeRMN by email or telephone (93 581 3785 or 93 581 2291) to specify the delivery of samples.

For any questions or concerns, you can contact us via our institutional email () or in our personal emails.

In vivo MRI/MRS longitudinal study of immunotherapy in Alzheimer’s

Progression of Alzheimer’s disease and effect of scFv-h3D6 immunotherapy in the 3xTg-AD mouse model: An in vivo longitudinal study using Magnetic Resonance Imaging and Spectroscopy by Güell-Bosch J, Lope-Piedrafita S, Esquerda-Canals G, Montoliu-Gaya L, and Villegas S. NMR in Biomedicine 33(5):e4263; DOI: 10.1002/nbm.4263.

Alzheimer’s disease (AD) is an incurable disease that affects most of the 47 million people estimated as living with dementia worldwide. The main histopathological hallmarks of AD are extracellular β-amyloid (Aβ) plaques and intracellular neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein.  In recent years, Aβ-immunotherapy has been revealed as a potential tool in AD treatment. One strategy consists of using single-chain variable fragments (scFvs), which avoids the fragment crystallizable (Fc) effects that are supposed to trigger a microglial response, leading to microhemorrhages and vasogenic edemas, as evidenced in clinical trials with bapineuzumab. The scFv-h3D6 generated by our research group derives from this monoclonal antibody, which targets the N-terminal of the Aβ peptide and recognizes monomers, oligomers and fibrils.

In this study, 3xTg-AD mice were intraperitoneally and monthly treated with 100 μg of scFv-h3D6 (a dose of ~3.3 mg/kg) or PBS, from 5 to 12 months of age (-mo), the age at which the mice were sacrificed and samples collected for histological and biochemical analyses. During treatments, four monitoring sessions using magnetic resonance imaging and spectroscopy (MRI/MRS) were performed at 5, 7, 9, and 12 months of age. MRI/MRS techniques allow, in a non-invasive manner, to draw an in vivo picture of concrete aspects of the pathology and to monitor its development across time. Compared with the genetic background, 3xTg-AD mice presented a smaller volume in almost all cerebral regions and ages examined, an increase in both the intra and extracellular Aβ1-42 at 12-mo, and an inflammation process at this age, in both the hippocampus (IL-6 and mIns) and cortex (IL-6). In addition, treatment with scFv-h3D6 partially recovered the values in brain volume, and Aβ, IL-6, and mIns concentrations, among others, encouraging further studies with this antibody fragment.

Alarm Status #covid-19

Due to the alarm status by the Covid-19 the UAB’s Nuclear Magnetic Resonance Service will be temporally closed. For any questions you can contact us by email at the institutional address

Reopening the NMR Service from Monday 25th May
http://sermn.uab.cat/2020/05/reobrim-el-sermn-uab/

Microwave-Assisted Synthesis of SPION-Reduced Graphene Oxide Hybrids for Magnetic Resonance Imaging (MRI)

by Llenas M, Sandoval S, Costa PM, Oró-Solé J, Lope-Piedrafita S, Ballesteros B, Al-Jamal KT, Tobias G. Nanomaterials 24;9(10), 1364; DOI: 10.3390/nano9101364.

Magnetic resonance imaging (MRI) is a useful tool for disease diagnosis and treatment monitoring. Superparamagnetic iron oxide nanoparticles (SPION) show good performance as transverse relaxation (T2) contrast agents, thus facilitating the interpretation of the acquired images. Attachment of SPION onto nanocarriers prevents their agglomeration, improving the circulation time and efficiency. Graphene derivatives, such as graphene oxide (GO) and reduced graphene oxide (RGO), are appealing nanocarriers since they have both high surface area and functional moieties that make them ideal substrates for the attachment of nanoparticles. A fast, simple, and environmentally friendly microwave-assisted approach for the synthesis of SPION-RGO hybrids has been demonstrated in this study. Different iron precursor/GO ratios were used leading to SPION, with a median diameter of 7.1 nm, homogeneously distributed along the RGO surface. Good relaxivity (r2*) values were obtained in MRI studies and no significant toxicity was detected within in vitro tests following GL261 glioma and J774 macrophage-like cells for 24 h with SPION-RGO, demonstrating the applicability of the hybrids as T2-weighted MRI contrast agents.