Category Archives: NMR Events & Courses

News about courses, workshops, seminars, conferences and any other training activity related to the SeRMN.

SeRMN contribution to SMASH Small Molecule NMR Conference

Kumar Motiram-Corral is presenting at SMASH 2021 Conference a talk entitled In situ Enantiospecific Detection of Multiple Metabolites in Mixtures using NMR Spectroscopy, related to some of our recent research work. The presentation will be 1st of September in the section “Unveiling the Unknown – New Methods in Structure Elucidation“.

L. T. Kuhn, K. Motiram-Corral, T. J. Athersuch, T. Parella, M. Pérez-Trujillo, Angew. Chem. Int. Ed. 59 (2020) 23615.

SeRMN contribution at EUROMAR 2021 Conference

Some of our recent research work was presented at the European NMR meeting Euromar 2021 that was going to take place at Portoroz (Slovenia), but which was finally virtual from the 5th to the 8th of July 2021.

· Míriam Pérez-Trujillo presented the talk In situ Enantiospecific Detection of Multiple Metabolites in Mixtures using NMR Spectroscopy in the “Metabolomics” session. In this talk our last advances in enantiodifferentiation using NMR were shown and discussed.

To date, the enantiospecific analysis of mixtures necessarily requires prior separation of the individual components. The simultaneous enantiospecific detection of multiple chiral molecules in a mixture represents a major challenge, which would lead to a significantly better understanding of the underlying biological processes; e.g. via enantiospecifically analyzing metabolites in their native environment. Here, we report on the first in situ enantiospecific detection of a thirty-nine-component mixture. As a proof of concept, eighteen essential amino acids (AAs) at physiological concentrations were simultaneously enantiospecifically detected using NMR spectroscopy and a chiral solvating agent. This work represents a first step towards the simultaneous multicomponent enantiospecific analysis of complex mixtures, a capability that will have substantial impact on metabolism studies, metabolic phenotyping, chemical reaction monitoring, and many other fields where complex mixtures containing chiral molecules require efficient characterization.

L. T. Kuhn, K. Motiram-Corral, T. J. Athersuch, T. Parella, M. Pérez-Trujillo, Angew. Chem. Int. Ed. 59 (2020) 23615.

SeRMN contributions at 10th GERMN biennial /9th IberAmerican/7th Iberian NMR Meeting

Some of the SeRMN staff has presented our recent research work at the biannual Spanish and IberAmerican NMR meeting, 10th GERMN biennial /9th IberAmerican/7th Iberian NMR Meeting. This year it was a virtual meeting taking place from 26 to 29 April 2021.

Pau Nolis presented an oral communication entitled “Reducing experimental time using Multiple Fid Acquisition“. P. Nolis, K. Motiram-Corral, M. Pérez-Trujillo, T. Parella.

Speeding-up NMR molecular analysis is an important research field which has been continuously advancing since NMR early days. The relevant benefits are clear and evident: i) reduce analysis time per sample => reduce analysis cost; ii) gain spectrometer time to analyze new samples => improve spectrometer efficiency. Multiple FID Acquisition (MFA) strategy consists in the design of NMR pulse sequence experiments accommodating N acquisition windows, each registering different relevant structural information. This strategy is faster
than perform a traditional sequential acquisition of N separated experiments. Several design strategies and practical experiments will be shown and discussed.

Míriam Pérez-Trujillo presented an oral communication entitled “Simultaneous Enantiospecific Detection of Multiple Metabolites in Mixtures using NMR Spectroscopy“. L. T. Kuhn, K. Motiram-Corral, T. J. Athersuch, T. Parella, M. Pérez-Trujillo.

Chirality plays a fundamental role in nature, but its detection and quantification still face many limitations. To date, the enantiospecific analysis of mixtures necessarily requires prior separation of the individual components. The simultaneous enantiospecific detection of multiple chiral molecules in a mixture represents a major challenge, which would lead to a
significantly better understanding of the underlying biological processes; e.g. via enantiospecifically analyzing metabolites in their native environment. Here, we report on the first in situ enantiospecific detection of a thirty-ninecomponent mixture. As a proof of concept, eighteen essential amino acids (AAs) at physiological concentrations were simultaneously enantiospecifically detected using NMR spectroscopy and a chiral solvating agent. This work
represents a first step towards the simultaneous multicomponent enantiospecific analysis of complex mixtures, a capability that will have substantial impact on metabolism studies, metabolic phenotyping, chemical reaction monitoring, and many other fields where complex mixtures containing chiral molecules require efficient characterization.

12th Workshop on Magnetic Resonance Spectroscopy and Imaging (MRI/MRS) Applied to Laboratory Animals

Workshop dates:February 15th – 18th, 2021
Registration deadline:February 8th, 2021
Registration:  online
Capacity:Workshop limited to 4 participants (first come, first served)
Contact person:Silvia Lope-Piedrafita, PhD ()

This course combines a comprehensive series of lectures on the technology of Magnetic resonance spectroscopy and imaging (MRS/MRI) with hands-on laboratory sessions to provide practical demonstrations of key concepts and procedures for preclinical studies.

Whether you are considering MRI as a research tool in your lab or just would like to learn more about MRI, this workshop addresses practical aspects of experimental MRI with laboratory animals and provide valuable hands-on experience on a 7 Tesla Bruker BioSpec spectrometer.

See the workshop brochure for more information or contact Dr. Silvia Lope via email.

SeRMN contribution at SMASH 2019

Kumar Motiram-Corral presented a poster titled “Implementing one-shot multiple-FID acquisition into homonuclear and heteronuclear NMR experiments” at SMASH 19 in Porto (Portugal).

To date, time-efficient approaches are a challenged task for spectroscopists.  The goal is to obtain chemical information reducing experimental time without considerably losing of sensitivity.

Different time-efficient approaches have been described over the years.  Time sharing (Parella et. al.) tactic acquires the 15N and 13C nuclei in the same spectrum in spectrometers which have a triple channel hardware configuration[1].  Non-Uniform Sampling (NUS) [2] algorithm has achieved a substantial reduction of experimental time reducing the number of t1 increments needed by multidimensional experiments.  Recently, NOAH [3] (NMR by ordered Acquisition using 1H detection) has been developed by Kupče (Bruker Co.) and Claridge (University of Oxford) provides the way to get proper experiments in different spectra with the same spectral quality.

[4]MFA (Multiple FID Acquisition) consists in obtaining up to four different experiments decreasing close to 60% of time.  MFA provides a new novel proof concept of COSY, TOCSY and HMBC experiments in small molecules.  Actually, MFA strategy was proposed many years ago with the COCONOSY experiment [5-7],  which could be collected 2D COSY and NOESY data with a single pulse scheme.  [4]MFA has also been implemented in magic-angle-spinning solid-state NMR experiments devoted for biomacromolecules using standard spectrometer configuration.  Despite its limitations related to the use of long acquisition of free-induction decays (FIDs) to accurately digitalize the data and the mandatory use of long phase cycles for convenient pathway selection, nowadays, the use of pulsed field gradients (PFGs) is the solution for this drawback.  [4]MFA is based on the relaxation of the remaining transverse magnetization, which usually relaxes to its original magnetization, can be manipulated by an appropriate additional mixing process and recorded again to obtain a second or third NMR data provided that T2 (transverse relaxation times) are long enough.  [4]Its main advantage is that each experiment is acquired in a different display.  [4]MFA is a powerful experiment for the sequential structural assignment of a whole spin system without ambiguities.  This method is also useful for selective experiments as SE-TOCSY.

References: 

  1. Nolis, P., Pérez, M., & Parella, T. (2006). Time-sharing evolution and sensitivity enhancements in 2D HSQC-TOCSY and HSQMBC experiments. Magnetic Resonance in Chemistry, 44, 11, 1031-1036, 2006
  2. K. Kazimierczuk and V. Y. Orekhov , Angew. Chem., Int. Ed., 2011, 50 , 5556 -5559
  3. Kupče, E., & Claridge, T. D. W. (2018). Molecular structure from a single NMR supersequence. Chemical Communications, 54, 7139-7142, 2018.
  4. Motiram-Corral, K., Pérez-Trujillo, M., Nolis, P., & Parella, T. (2018). Implementing one-shot multiple-FID acquisition into homonuclear and heteronuclear NMR experiments. Chemical Communications, 54(96), 13507–13510, 2018.
  5. A. Z. Gurevich , I. L. Barsukov , A. S. Arseniev and V. F. Bystrov , J. Magn. Reson., 56, 471 -478, 1984. 
  6. C. A. G. Haasnoot , F. J. M. van de Ven and C. W. Hilbers , J. Magn. Reson.56 , 343 -349, 1984. 
  7. J. Cavanagh and M. Rance , J. Magn. Reson., 14 , 408 -414, 1990. 

SeRMN contributions at ISMAR EUROMAR 2019 Conference

Some of the SeRMN staff will present our last research works at the annual meeting of the European magnetic resonance community ISMAR EUROMAR 2019 Conference that will take place from 25th to 30th August in Berlin. Find below a summary of our contributions.

Pau Nolis presents a poster entitled “Reducing experimental time using Multiple Fid Acquisition (MFA) strategy” (P341). Pau Nolis, Kumar Motiram-Corral, Miriam Pérez-Trujillo, Teodor Parella.

Speeding-up NMR molecular analysis is an important research field which has been continuously advancing since NMR early days. The relevant benefits are clear and evident: reduce the time per analysis directly reduce its cost and gaining spectrometer time to analyze new samples. Many interesting tools and concepts have been appearing in last decades. Concretely, our experience focuses on the development of new NMR experiments using TS (Time-Shared), SA (Spectral Aliasing) and MFA (Multiple Fid Acquisition). MFA strategy is an interesting strategy that allows the acquisition of different structural information in a single experiment. Basically, MFA experiments consist in the design of pulse sequence experiments which accommodate several acquisition windows per experi-ment, each registering different relevant information for the structural molecular character-ization. The methodology brings a corresponding important time benefit. Last year, we have reported several new NMR experiments designed with MFA stratey and herein we would present the most relevant achievements. The overall discussion will be mainly focused on the sensitivity gains per time unit of the presented experiments.

Eva Monteagudo presents a poster entitled “Enantiodifferentiation Study of Spiroglycol Chirality” (P306). Eva Monteagudo, Albert Virgili, Teodor Parella, Carles Jaime.

The 3,9-bis(1,1-dimethyl-2-hydroxyethyl)-2,4,8,10-tetraoxaspiro[5.5]undecane commonly named pentaspiroglycol (PSG) or spiroglycol (SPG) is a high molecular weight rigid alicy-clic diol widely used in the chemical industry. SPG has no hazardous classification, it is not mutagenic and is a safe alternative to Bisphenol A, a well-known chemical which is rising concern due to his proved endocrine disruptor activity. Moreover, some of the SPG main applications are focused on epoxy resins, liquid polyester resins, radiation curing resins and in polymer film material field. However, the spiroglycol structure, configuration and conformation have never been deeply studied. Herein, we perform for the first time a preliminary NMR and computational study of the spiroglycol structure. SPG is a highly symmetrical molecule but it should be chiral due to the presence of a chiral axis. The presence of two enantiomers was demonstrated per-forming NMR enantiodifferentiation experiments using α,α’-bis(trifluoromethyl)-9,10-an-thracenedimethanol (ABTE) as chiral solvating agent (CSA). The addition of 0.6 equivalents of ABTE allows the differentiation of several spiroglycol proton signals. The lack of resolu-tion observed in the proton spectrum can be tackled through the corresponding 13C NMR spectrum where a significant enantiodifferentiation at the spirocarbon atom was observed.In order to physically separate both enantiomers, a SPG derivatization with camphor-sulphonic acid was performed affording the corresponding diastereoisomeric ester mixture.

11th Workshop on Magnetic Resonance Spectroscopy and Imaging (MRI/MRS) Applied to Laboratory Animals

Workshop dates:June 25th – 28th, 2018
Registration deadline:June 10th, 2018
Registration:  online
Capacity:Workshop limited to 4 participants (first come, first served)
Contact person:Silvia Lope-Piedrafita, PhD ()

This course combines a comprehensive series of lectures on the technology of Magnetic resonance spectroscopy and imaging (MRS/MRI) with hands-on laboratory sessions to provide practical demonstrations of key concepts and procedures for preclinical studies.

Whether you are considering MRI as a research tool in your lab or just would like to learn more about MRI, this workshop addresses practical aspects of experimental MRI with laboratory animals and provide valuable hands-on experience on a 7 Tesla Bruker BioSpec spectrometer.

See the workshop brochure for more information or contact Dr. Silvia Lope via email.

SeRMN contribution to Symmetry 2017 Conference

 

Some of the SeRMN staff  presented our last research work about chirality at The first International Conference on Symmetry, Symmetry 2017, that took place from16th to 18th October in Barcelona. Find below a summary of our contribution.

Míriam Pérez-Trujillo presented a lecture entitled: “Chiral Recognition by Dissolution Dynamic Nuclear Polarization NMR Spectroscopy

Abstract: The recognition of enantiomeric molecules by chemical analytical techniques is still a challenge. A method based on d-DNP (dissolution dynamic nuclear polarization) NMR spectroscopy to study chiral recognition was described for the first time [1]. DNP allows boosting NMR sensitivity by several orders of magnitude, overcoming one of the main limitations of NMR spectroscopy [2]. A method integrating d-DNP and 13C NMR-aided enantiodifferentiation using chiral solvating agents (CSA) was developed, in which only the chiral analyte was hyperpolarized and selectively observed by NMR. The described method enhances the sensitivity of the conventional NMR-based procedure [3] and lightens the common problem of signal overlapping between analyte and CSA. As proof on concept, racemic metabolite 13C-labeled DL-methionine was enantiodifferentiated by a single-scan 13C NMR experiment. This method entails a step forward in the chiral recognition of small molecules by NMR spectroscopy; it opens new possibilities in situations where the sensitivity is limited, for example, when low analyte concentration available or when measurement of an insensitive nucleus required. The advantages and current limitations of the method, as well as future perspectives, are discussed.

Presentació Software RMN Mnova (Mestrelab)

Esteu convidats a la presentació del software Mnova (Mestrelab Research) el proper dimecres 1 de Març a l’aula C1/009, de 15:30 a 17:30. És una eina de gran utilitat per qualsevol químic interessat en el processament/manipulació rutinàri/a de  dades de RMN (i altres tècniques analítiques) d’una manera ràpida, eficient i molt intuitiva. Es presentarà les novetats més importants de la nova versió Mnova11 així com es resoldrà qualsevol qüestió pràctica que es plantegi.

You are invited to the presentation of the new Mnova software package (Mestrelab Research) on Wednesday March 1st in class C1 /009, from 15:30 to 17:30. It is a useful tool for any chemist interested in processing / handling routine NMR data (and other analytical techniques) in an efficient and intuitive way. The most important developments of the new version Mnova11 will be presented and practical question of interest will be discussed.