Category Archives: Uncategorized

12th Workshop on Magnetic Resonance Spectroscopy and Imaging (MRI/MRS) Applied to Laboratory Animals

Workshop dates:February 15th – 18th, 2021
Registration deadline:February 8th, 2021
Registration:  online
Capacity:Workshop limited to 4 participants (first come, first served)
Contact person:Silvia Lope-Piedrafita, PhD ()

This course combines a comprehensive series of lectures on the technology of Magnetic resonance spectroscopy and imaging (MRS/MRI) with hands-on laboratory sessions to provide practical demonstrations of key concepts and procedures for preclinical studies.

Whether you are considering MRI as a research tool in your lab or just would like to learn more about MRI, this workshop addresses practical aspects of experimental MRI with laboratory animals and provide valuable hands-on experience on a 7 Tesla Bruker BioSpec spectrometer.

See the workshop brochure for more information or contact Dr. Silvia Lope via email.

22-06-2020: Updating Operation Mode in the SeRMN – UAB

From 22-6-2020, all authorized SeRMN users can make use of the self-service mode in the 250auto, 360MHz and 400MHz spectrometers, exclusively from 9AM to 5PM, using the booking program ( The experiment request service is also active for all those samples that are not recorded in self-service mode:

    Solution NMR form:
    Solid State NMR:
MRI/MRS studies (Biospec) :
    Another Request :

At the moment, the 250robot spectrometer is reserved exclusively for this type of work.

It is very important that the following mandatory rules are respectedt
1. Self-service exclusively from 9AM to 5PM. SeRMN access is not allowed outside of this time slot as there will be no SeRMN staff.
2. Only 1 person per machine is allowed. Always respect two meters of distance separation between people.
3. It is necessary to follow the established protocols of hygiene and safety at a personal level (mask, hand disinfection …)
4. Before and, above all, after using the keyboard and other tools to carry out the experiments (spinner, calibrator …) it is necessary to disinfect them with the hygiene material that you will find available.

Any questions or clarifications, you can contact the staff of the SeRMN who will be present from 9AM to 5PM or through the address .

Recovering energy

As is tradition in Catalonia in February, the group of SeRMN got together to enjoy a Calçotada, eating the typical calçots (a type of scallion or green onion) well combined with a “Porró” (a traditional glass wine pitcher).

Neonatal handling enduringly decreases anxiety and stress responses

“Neonatal handling enduringly decreases anxiety and stress responses and reduces hippocampus and amygdala volume in agenetic model of differential anxiety: Behavioral-volumetric associations in the Roman rats trains” by C. Río-Álamos, I. Oliveras, M. A. Piludu, C. Gerbolés, T. Cañete, G. Blázquez, S. Lope-Piedrafita, E. Martínez-Membrives, R. Torrubia, A. Tobeña, and A. Fernández-Teruel. European Neuropsychopharmacology, 2017,  27: 146–158. DOI: 10.1016/j.euroneuro.2016.12.003

The hippocampus and amygdala have been proposed as key neural structures related to anxiety. A more active hippocampus/amygdala system has been related to greater anxious responses in situations involving conflict/novelty. The Roman Low- (RLA) and High-avoidance (RHA) rat strains constitute a genetic model of differential anxiety. Relative to RHA rats, RLA rats exhibit enhanced anxiety/fearfulness, augmented hippocampal/amygdala c-Fos expression following exposure to novelty/conflict, increased hippocampal neuronal density and higher endocrine responses to stress. Neonatal handling (NH) is an environmental treatment with long-lasting anxiety/stress-reducing effects in rodents. Since hippocampus and amygdala volume are supposed to be related to anxiety/fear, it was hypothesized  a greater volume of both areas in RLA than in RHA rats, as well as that NH treatment would reduce anxiety and the volume of both structures. Adult untreated and NH-treated RHA and RLA rats were tested for anxiety, sensorimotor gating (PPI), stress-induced corticosterone and prolactin responses, two-way active avoidance acquisition and in vivo 7 T 1H-Magnetic resonance image.

As expected, untreated RLA rats showed higher anxiety and post-stress hormone responses, as well as greater hippocampus and amygdala volumes than untreated RHA rats. NH decreased anxiety/stress responses, especially in RLA rats, and significantly reduced hippocampus and amygdala volumes in this strain. Dorsal striatum volume was not different between the strains nor it was affected by NH. Finally, there were positive associations (as shown by correlations, factor analysis and multiple regression) between anxiety and PPI and hippocampus/amygdala volumes.

HOBS experiments to measure T1/T2 relaxation times in overlapped regions

S10907807“Measurement of T1/T2 relaxation times in overlapped regions from homodecoupled 1H singlet signals” by Laura Castañar, Pau Nolis, Albert Virgili and Teodor Parella. Journal of Magnetic Resonance 244 (2014) 30-35. DOI: 10.1016/j.jmr.2014.04.003

The implementation of the HOmodecoupled Band-Selective (HOBS) technique in the conventional Inversion-Recovery and CPMG-based PROJECT experiments is described. The achievement of fully homodecoupled signals allows the distinction of overlapped 1H resonances with small chemical shift differences. It is shown that the corresponding T1 and T2 relaxation times can be individually measured from the resulting singlet lines using conventional exponential curve-fitting methods. Continue reading HOBS experiments to measure T1/T2 relaxation times in overlapped regions