Workshop limited to 4 participants (first come, first served)
Contact person:
Silvia Lope-Piedrafita, PhD ()
This course combines a comprehensive series of lectures on the technology of Magnetic resonance spectroscopy and imaging (MRS/MRI) with hands-on laboratory sessions to provide practical demonstrations of key concepts and procedures for preclinical studies.
Whether you are considering MRI as a research tool in your lab or just would like to learn more about MRI, this workshop addresses practical aspects of experimental MRI with laboratory animals and provide valuable hands-on experience on a 7 Tesla Bruker BioSpec spectrometer.
The Specialised Group of NMR of the Spanish Royal Society of Chemistry (GERMN, RSEQ) organizes the XV Manuel Rico NMR Summer School in Jaca from 19th-23th June 2023.
This well-established bi-annual summer course is aimed at PhD students, postdocs, technical staff of NMR facilities and, in general, to researchers from academy and industry interested in deepening their understanding of NMR. The course covers theoretical aspects, state-of-the-art methods and applications in fields as diverse as Molecular Chemistry, Materials, Biology, Medicine, and Pharmaceutical Industry, including solution-state, and solid-state NMR techniques, as well as MRI techniques.
Silvia Lope, SeRMN staff, will be teaching a class in “Magnetic Resonance Imaging”.
The Specialised Group of NMR of the Spanish Royal Society of Chemistry (GERMN, RSEQ) organizes the XIV Manuel Rico NMR Summer School in Jaca from 19th-24th June 2022.
This well-established bi-annual summer course is aimed at PhD students, postdocs, technical staff of NMR facilities and, in general, to researchers from academy and industry interested in deepening their understanding of NMR. The course covers theoretical aspects, state-of-the-art methods and applications in fields as diverse as Molecular Chemistry, Materials, Biology, Medicine, and Pharmaceutical Industry, including solution-state, and solid-state NMR techniques, as well as MRI techniques.
Silvia Lope, SeRMN staff, will be teaching a class in “Magnetic Resonance Imaging”.
End of pre-registration April 12th, 2022
Start of Registration: April 30th, 2022
End of Registration: May 17th, 2022
For detailed information please visit their webpage https://rmnjaca22.iqfr.csic.es/
Workshop limited to 4 participants (first come, first served)
Contact person:
Silvia Lope-Piedrafita, PhD ()
This course combines a comprehensive series of lectures on the technology of Magnetic resonance spectroscopy and imaging (MRS/MRI) with hands-on laboratory sessions to provide practical demonstrations of key concepts and procedures for preclinical studies.
Whether you are considering MRI as a research tool in your lab or just would like to learn more about MRI, this workshop addresses practical aspects of experimental MRI with laboratory animals and provide valuable hands-on experience on a 7 Tesla Bruker BioSpec spectrometer.
Some of our recent research work was presented at the European NMR meeting Euromar 2021 that was going to take place at Portoroz (Slovenia), but which was finally virtual from the 5th to the 8th of July 2021.
To date, the enantiospecific analysis of mixtures necessarily requires prior separation of the individual components. The simultaneous enantiospecific detection of multiple chiral molecules in a mixture represents a major challenge, which would lead to a significantly better understanding of the underlying biological processes; e.g. via enantiospecifically analyzing metabolites in their native environment. Here, we report on the first in situ enantiospecific detection of a thirty-nine-component mixture. As a proof of concept, eighteen essential amino acids (AAs) at physiological concentrations were simultaneously enantiospecifically detected using NMR spectroscopy and a chiral solvating agent. This work represents a first step towards the simultaneous multicomponent enantiospecific analysis of complex mixtures, a capability that will have substantial impact on metabolism studies, metabolic phenotyping, chemical reaction monitoring, and many other fields where complex mixtures containing chiral molecules require efficient characterization.
Some of the SeRMN staff has presented our recent research work at the biannual Spanish and IberAmerican NMR meeting, 10th GERMN biennial /9th IberAmerican/7th Iberian NMR Meeting. This year it was a virtual meeting taking place from 26 to 29 April 2021.
Pau Nolis presented an oral communication entitled “Reducing experimental time using Multiple Fid Acquisition“. P. Nolis, K. Motiram-Corral, M. Pérez-Trujillo, T. Parella.
Speeding-up NMR molecular analysis is an important research field which has been continuously advancing since NMR early days. The relevant benefits are clear and evident: i) reduce analysis time per sample => reduce analysis cost; ii) gain spectrometer time to analyze new samples => improve spectrometer efficiency. Multiple FID Acquisition (MFA) strategy consists in the design of NMR pulse sequence experiments accommodating N acquisition windows, each registering different relevant structural information. This strategy is faster than perform a traditional sequential acquisition of N separated experiments. Several design strategies and practical experiments will be shown and discussed.
Míriam Pérez-Trujillo presented an oral communication entitled “Simultaneous Enantiospecific Detection of Multiple Metabolites in Mixtures using NMR Spectroscopy“. L. T. Kuhn, K. Motiram-Corral, T. J. Athersuch, T. Parella, M. Pérez-Trujillo.
Chirality plays a fundamental role in nature, but its detection and quantification still face many limitations. To date, the enantiospecific analysis of mixtures necessarily requires prior separation of the individual components. The simultaneous enantiospecific detection of multiple chiral molecules in a mixture represents a major challenge, which would lead to a significantly better understanding of the underlying biological processes; e.g. via enantiospecifically analyzing metabolites in their native environment. Here, we report on the first in situ enantiospecific detection of a thirty-ninecomponent mixture. As a proof of concept, eighteen essential amino acids (AAs) at physiological concentrations were simultaneously enantiospecifically detected using NMR spectroscopy and a chiral solvating agent. This work represents a first step towards the simultaneous multicomponent enantiospecific analysis of complex mixtures, a capability that will have substantial impact on metabolism studies, metabolic phenotyping, chemical reaction monitoring, and many other fields where complex mixtures containing chiral molecules require efficient characterization.
Workshop limited to 4 participants (first come, first served)
Contact person:
Silvia Lope-Piedrafita, PhD ()
This course combines a comprehensive series of lectures on the technology of Magnetic resonance spectroscopy and imaging (MRS/MRI) with hands-on laboratory sessions to provide practical demonstrations of key concepts and procedures for preclinical studies.
Whether you are considering MRI as a research tool in your lab or just would like to learn more about MRI, this workshop addresses practical aspects of experimental MRI with laboratory animals and provide valuable hands-on experience on a 7 Tesla Bruker BioSpec spectrometer.
Kumar Motiram-Corral presented a poster titled “Implementing one-shot multiple-FID acquisition into homonuclear and heteronuclear NMR experiments” at SMASH 19 in Porto (Portugal).
To date, time-efficient approaches are a challenged task for spectroscopists. The goal is to obtain chemical information reducing experimental time without considerably losing of sensitivity.
Different time-efficient approaches have been described over the years. Time sharing (Parella et. al.) tactic acquires the 15N and 13C nuclei in the same spectrum in spectrometers which have a triple channel hardware configuration[1]. Non-Uniform Sampling (NUS) [2] algorithm has achieved a substantial reduction of experimental time reducing the number of t1 increments needed by multidimensional experiments. Recently, NOAH [3] (NMR by ordered Acquisition using 1H detection) has been developed by Kupče (Bruker Co.) and Claridge (University of Oxford) provides the way to get proper experiments in different spectra with the same spectral quality.
[4]MFA (Multiple FID Acquisition) consists in obtaining up to four different experiments decreasing close to 60% of time. MFA provides a new novel proof concept of COSY, TOCSY and HMBC experiments in small molecules. Actually, MFA strategy was proposed many years ago with the COCONOSY experiment [5-7], which could be collected 2D COSY and NOESY data with a single pulse scheme. [4]MFA has also been implemented in magic-angle-spinning solid-state NMR experiments devoted for biomacromolecules using standard spectrometer configuration. Despite its limitations related to the use of long acquisition of free-induction decays (FIDs) to accurately digitalize the data and the mandatory use of long phase cycles for convenient pathway selection, nowadays, the use of pulsed field gradients (PFGs) is the solution for this drawback. [4]MFA is based on the relaxation of the remaining transverse magnetization, which usually relaxes to its original magnetization, can be manipulated by an appropriate additional mixing process and recorded again to obtain a second or third NMR data provided that T2 (transverse relaxation times) are long enough. [4]Its main advantage is that each experiment is acquired in a different display. [4]MFA is a powerful experiment for the sequential structural assignment of a whole spin system without ambiguities. This method is also useful for selective experiments as SE-TOCSY.
References:
Nolis, P., Pérez, M., & Parella, T. (2006). Time-sharing evolution and sensitivity enhancements in 2D HSQC-TOCSY and HSQMBC experiments. Magnetic Resonance in Chemistry, 44, 11, 1031-1036, 2006
K. Kazimierczuk and V. Y. Orekhov , Angew. Chem., Int. Ed., 2011, 50 , 5556 -5559
Kupče, E., & Claridge, T. D. W. (2018). Molecular structure from a single NMR supersequence. Chemical Communications, 54, 7139-7142, 2018.
Motiram-Corral, K., Pérez-Trujillo, M., Nolis, P., & Parella, T. (2018). Implementing one-shot multiple-FID acquisition into homonuclear and heteronuclear NMR experiments. Chemical Communications, 54(96), 13507–13510, 2018.
A. Z. Gurevich , I. L. Barsukov , A. S. Arseniev and V. F. Bystrov , J. Magn. Reson.,56, 471 -478, 1984.
C. A. G. Haasnoot , F. J. M. van de Ven and C. W. Hilbers , J. Magn. Reson., 56 , 343 -349, 1984.
J. Cavanagh and M. Rance , J. Magn. Reson., 14 , 408 -414, 1990.
Some of the SeRMN staff will present our last research works at the annual meeting of the European magnetic resonance community ISMAR EUROMAR 2019 Conference that will take place from 25th to 30th August in Berlin. Find below a summary of our contributions.
Speeding-up NMR molecular analysis is an
important research field which has been continuously advancing since NMR early
days. The relevant benefits are clear and evident: reduce the time per analysis
directly reduce its cost and gaining spectrometer time to analyze new samples. Many
interesting tools and concepts have been appearing in last decades. Concretely,
our experience focuses on the development of new NMR experiments using TS
(Time-Shared), SA (Spectral Aliasing) and MFA (Multiple Fid Acquisition). MFA
strategy is an interesting strategy that allows the acquisition of different structural
information in a single experiment. Basically, MFA experiments consist in the
design of pulse sequence experiments which accommodate several acquisition
windows per experi-ment, each registering different relevant information for
the structural molecular character-ization. The methodology brings a
corresponding important time benefit. Last year, we have reported several new
NMR experiments designed with MFA stratey and herein we would present the most
relevant achievements. The overall discussion will be mainly focused on the
sensitivity gains per time unit of the presented experiments.
The
3,9-bis(1,1-dimethyl-2-hydroxyethyl)-2,4,8,10-tetraoxaspiro[5.5]undecane
commonly named pentaspiroglycol
(PSG) or spiroglycol (SPG) is a high molecular weight rigid alicy-clic diol widely used in the chemical
industry. SPG has no hazardous classification, it is not mutagenic and is a safe alternative to
Bisphenol A, a well-known chemical which is rising concern due to his proved endocrine
disruptor activity. Moreover, some of the SPG main applications are focused on epoxy resins,
liquid polyester resins, radiation curing resins and
in polymer film material field. However, the spiroglycol structure,
configuration and conformation
have never been deeply studied. Herein,
we perform for the first time a preliminary NMR and computational study of the spiroglycol structure. SPG is a highly
symmetrical molecule but it should be chiral due to
the presence of a chiral axis. The presence of two enantiomers was demonstrated
per-forming NMR
enantiodifferentiation experiments using α,α’-bis(trifluoromethyl)-9,10-an-thracenedimethanol (ABTE) as chiral
solvating agent (CSA). The addition of 0.6 equivalents of ABTE allows the differentiation of
several spiroglycol proton signals. The lack of resolu-tion observed in the proton spectrum can be
tackled through the corresponding 13C NMR spectrum
where a significant enantiodifferentiation at the spirocarbon atom was observed.In order to physically separate both
enantiomers, a SPG derivatization with camphor-sulphonic
acid was performed affording the corresponding diastereoisomeric ester mixture.