Workshop limited to 4 participants (first come, first served)
Contact person:
Silvia Lope-Piedrafita, PhD ()
This course combines a comprehensive series of lectures on the technology of Magnetic resonance spectroscopy and imaging (MRS/MRI) with hands-on laboratory sessions to provide practical demonstrations of key concepts and procedures for preclinical studies.
Whether you are considering MRI as a research tool in your lab or just would like to learn more about MRI, this workshop addresses practical aspects of experimental MRI with laboratory animals and provide valuable hands-on experience on a 7 Tesla Bruker BioSpec spectrometer.
Some of the SeRMN staff presented our last research work about chirality at The first International Conference on Symmetry, Symmetry 2017, that took place from16th to 18th October in Barcelona. Find below a summary of our contribution.
Abstract: The recognition of enantiomeric molecules by chemical analytical techniques is still a challenge. A method based on d-DNP (dissolution dynamic nuclear polarization) NMR spectroscopy to study chiral recognition was described for the first time [1]. DNP allows boosting NMR sensitivity by several orders of magnitude, overcoming one of the main limitations of NMR spectroscopy [2]. A method integrating d-DNP and 13C NMR-aided enantiodifferentiation using chiral solvating agents (CSA) was developed, in which only the chiral analyte was hyperpolarized and selectively observed by NMR. The described method enhances the sensitivity of the conventional NMR-based procedure [3] and lightens the common problem of signal overlapping between analyte and CSA. As proof on concept, racemic metabolite 13C-labeled DL-methionine was enantiodifferentiated by a single-scan 13C NMR experiment. This method entails a step forward in the chiral recognition of small molecules by NMR spectroscopy; it opens new possibilities in situations where the sensitivity is limited, for example, when low analyte concentration available or when measurement of an insensitive nucleus required. The advantages and current limitations of the method, as well as future perspectives, are discussed.
Some of the SeRMN staff presented our last research works at the annual meeting of the European magnetic resonance community EUROMAR 2017 Conference that took place from 2th to 6th July in Warsaw, Poland. Find below a summary of our contributions.
Esteu convidats a la presentació del software Mnova (Mestrelab Research) el proper dimecres 1 de Març a l’aula C1/009, de 15:30 a 17:30. És una eina de gran utilitat per qualsevol químic interessat en el processament/manipulació rutinàri/a de dades de RMN (i altres tècniques analítiques) d’una manera ràpida, eficient i molt intuitiva. Es presentarà les novetats més importants de la nova versió Mnova11 així com es resoldrà qualsevol qüestió pràctica que es plantegi.
You are invited to the presentation of the new Mnova software package (Mestrelab Research) on Wednesday March 1st in class C1 /009, from 15:30 to 17:30. It is a useful tool for any chemist interested in processing / handling routine NMR data (and other analytical techniques) in an efficient and intuitive way. The most important developments of the new version Mnova11 will be presented and practical question of interest will be discussed.
Workshop limited to 4 participants (first come, first served)
Contact person:
Silvia Lope-Piedrafita, PhD ()
This course combines a comprehensive series of lectures on the technology of Magnetic resonance spectroscopy and imaging (MRS/MRI) with hands-on laboratory sessions to provide practical demonstrations of key concepts and procedures for preclinical studies.
Whether you are considering MRI as a research tool in your lab or just would like to learn more about MRI, this workshop addresses practical aspects of experimental MRI with laboratory animals and provide valuable hands-on experience on a 7 Tesla Bruker BioSpec spectrometer.
Some of our last research works has been presented at the annual meeting of the SmallMolecule NMR Conference (SMASH) that has been taken place in La Jolla (USA) from 11thto 14thSeptember 2016.
Abstract: A fast RDC-assisted strategy involving the simultaneous determination of isotropic (scalar) and anisotropic (total) interactions is reported. The concerted use of individual 1DCH for all CHn multiplicities and 2DHH obtained from a single 1JCH/2JHH-resolved NMR spectrum offers an unambiguous assignment of diastereotopic protons and an efficient discrimination between all eight possible diastereoisomeric structures of strychnine which contains six stereocenters.
Abstract: The development of novel experimental strategies to significantly enhance signal resolution by broadband homodecoupling is a current topic of high interest in 1H NMR spectroscopy . A number of different building blocks have been implemented into 1D and 2D homo- and heteronuclear experiments in order to provide resolution-enhanced pure chemical shift 1H NMR spectra, where signals appear collapsed to singlets. On the other hand, Covariance processing methods have been used to generate challenging NMR spectral representations . We present here the first attempts towards a general solution to generate Pure Shift NMR spectra by using Generalized Indirect Covariance (psGIC) co-processing3,4 . The current strategy is based on the calculation of a new 2D psGIC spectrum from the combination of a parent homo- or heteronuclear spectrum and a reference 2D F1-homodecoupled 1H- 1H correlation spectrum only showing diagonal cross-peaks (DIAG), which share a common 1H frequency dimension. Using psGIC, the F1 dimension in the DIAG spectrum is transferred to the F2 dimension of the parent spectrum, thus generating a new pure shift 2D spectrum
André Fredi made an oral presentation at the 8th GERMN / 5th Iberian NMR Meeting (GERMN 2016) held in Valencia, Spain from 27th to 29th June 2016.
In his presentation, that was titled “Exploring the use of Generalized Indirect Covariance to reconstruct Pure Shift NMR spectra: Current Pros and Cons”, André explained how to make pure spectra shift from Generalized Indirect Covariance processing (psGIC). This new method is basically a new way to get “synthetic” pure shift spectra without the need to purchase a pure shift spectrum in the spectrometer and without the penalties that pure-shift experiments cause.
André has been working as a Ph.D. candidate at the Department of Chemistry and SeRMN under the direction of Dr. Teodor Parella and Dr. Pau Nolis since November 2014, when he enrolled in the Department of Chemistry doctoral program at Universitat Autònoma de Barcelona with a fellowship from CNPq-Brazil. He is currently in his second year and expects to defend the doctoral thesis on 2017/2018.
Some of our last research works has been presented by Núria Marcó at the annual meeting of the SmallMolecule NMR Conference (SMASH) that has been taken place in Baveno (Italy) from 20thto 24thSeptember 2015.
Some of the SeRMN staff will present our last research works at the annual meeting of the European magnetic resonance community EUROMAR 2015 Conference that will take place from 5th to 10th July in Prague, Czech Republic. Find below a summary of our contributions. Continue reading SeRMN contributions at EUROMAR 2015 Conference→