Workshop limited to 4 participants (first come, first served)
Contact person:
Silvia Lope-Piedrafita, PhD ()
This course combines a comprehensive series of lectures on the technology of Magnetic resonance spectroscopy and imaging (MRS/MRI) with hands-on laboratory sessions to provide practical demonstrations of key concepts and procedures for preclinical studies.
Whether you are considering MRI as a research tool in your lab or just would like to learn more about MRI, this workshop addresses practical aspects of experimental MRI with laboratory animals and provide valuable hands-on experience on a 7 Tesla Bruker BioSpec spectrometer.
García Martín, María Luisa & Pilar López Larrubia (eds.). 2018. Preclinical MRI. Methods in Molecular Biology series. Springer New York. DOI: 10.1007/978-1-4939-7531-0
This book was conceived with the idea of providing an update on a wide variety of preclinical MRI methods and protocols to help technicians and researchers interested in this technology. The basics of MRI physics are introduced, followed by chapters describing updated methodology and protocols for some standard and more advanced MRI techniques covering diffusion, perfusion, functional imaging, in-vivo spectroscopy (proton and heteronuclear), susceptibility contrast MRI… The book also contains some chapters where some applications of those methods are illustrated in animal models of several diseases including cancer, stroke and neurodegeneration. Protocols are described in a step-by-step approach, with interesting notes and tips at the end of each chapter, which -a priori- should allow the new worker to obtain successful results with the first attempt ;o) .
On 21st March 2018 I sucessfully defended my PhD Thesis entitled: “New Applications of Covariance NMR and Experimental Development for Measurements of Homonuclear Coupling Constants in Overlapping Signals” (ISBN: 9788449079252), supervised by Dr. Teodor Parella and Dr. Pau Nolis, and obtained the degree of Ph.D. in Chemistry at the Department of Chemistry, Universitat Autònoma de Barcelona.
Accurate measurement of proton homonuclear coupling constants in overlapped signals by using a doubly-selective TOCSY G-SERF experiment.
Abstract
The experimental results obtained in this thesis are presented in the form of three papers published in NMR specialised scientific peer-reviewed journals.
Exploring the use of Generalized Indirect Covariance to Reconstruct Pure shift NMR Spectra: Current Pros and Cons. André Fredi, Pau Nolis, Carlos Cobas, Gary E. Martin and Teodor Parella. Journal of Magnetic Resonance, Volume 266, May 2016, Pages 16-22. DOI: 10.1016/j.jmr.2016.03.003
Access to experimentally infeasible spectra by pure-shift NMR covariance. André Fredi, Pau Nolis, Carlos Cobas and Teodor Parella. Journal of Magnetic Resonance, Volume 270, September 2016, Pages 161-168. DOI: 10.1016/j.jmr.2016.07.010
Accurate measurement of JHH in overlapped signals by a TOCSY‐edited SERF Experiment. André Fredi, Pau Nolis and Teodor Parella. Magnetic Resonance in Chemistry, Volume 55, Issue 6, June 2017, Pages 525-529. DOI: 10.1002/mrc.4572
The first two articles deal with the use of covariance NMR as a general method to generate novel psNMR spectra. The last work describes a new selTOCSY G-SERF experiment, for accurately measuring JHH in overlapped regions.
The first publication describes a novel general protocol to generate psNMR spectra by Covariance NMR. This new approach is unique in NMR spectroscopy; giving a cheap, fast an easy way to reconstruct psNMR spectra without spending time in the spectrometer. This new strategy has been referenced to as psNMR Covariance.
The concept of psNMR Covariance has been extended in the second publication by inserting Multiplicity-Edited (ME) information into 2D experiments that are difficult or even impossible to achieve experimentally. It is shown how the ME information can be efficiently transferred to a set of homonuclear and heteronuclear 2D NMR spectra by Covariance processing, reconstructing new psME spectra in a fast way. Finally, G-SERF and related methods only work for isolated 1H signals on which selective excitation can be successfully applied.
Unfortunately, as it happens in other frequency-selective experiments, this approach fails for overlapped signals. A doubly-selective TOCSY G-SERF scheme is presented in the third publication to circumvent this limitation, by measuring JHH efficiently even for protons resonating in crowded regions.
As is tradition in Catalonia in February, the group of SeRMN got together to enjoy a Calçotada, eating the typical calçots (a type of scallion or green onion) well combined with a “Porró” (a traditional glass wine pitcher).
Marcó, Núria, Roberto R. Gil & Teodor Parella. 2018. Isotropic/Anisotropic NMR Editing by Resolution-Enhanced NMR Spectroscopy. ChemPhysChem 19(9). 1024–1029. DOI: 10.1002/cphc.201800094
Modern resolution-enhanced NMR techniques can monitor the in-situ discrimination of co-existing isotropic and anisotropic contributions of small molecules dissolved in weakly aligning PMMA/CDCl3 media. The simultaneous sign-sensitive determination of accurate Δδ(1H) and Δδ(13C) between isotropic and anisotropic signals, and/or 1TCH and 1JCH coupling constants (and consequently 1H-13C RDCs and 1H/13C RCSAs) can be performed from spectral-aliased HSQC spectra.
“Molecule confirmation and structure characterization of pentatriacontatrienyl mycolate in Mycobacterium smegmatis” by M. Llorens-Fons, E. Julián, M. Luquin and M. Pérez-Trujillo. Chemistry and Physics of Lipids, 2018, Accepted Manuscript. DOI: https://doi.org/10.1016/j.chemphyslip.2017.12.006
Mycobacterium smegmatis is often used to study the different components of mycobacterial cell wall. Mycolic acids are important components of mycobacterial cell wall that have been associated with virulence. Recently, a novel lipid containing mycolic acids has been described in M. smegmatis. However, some uncertainties regarding the structure of this molecule named mycolate ester wax have been reported. The objective of this work was to perform an in depth structural study of this molecule for its precise characterization. Using 1H and 13C NMR spectroscopy, the molecular structure of mycolate ester wax found in M. smegmatis has been elucidated. The characterization was complemented with MS analyses. This molecule is formed by a carbon chain with three methyl substituted olefinic units and a mycolate structure with trans double bonds and cis cyclopropane rings. The present molecular study will facilitate the detection and identification of pentatriacontatrienyl mycolate (PTTM) in future studies by the performance of a simple 1D 1H NMR experiment.
“Assessment of biodistribution using mesenchymal stromal cells: Algorithm for study design and challenges in detection methodologies” by Reyes B, Coca MI, Codinach M, López-Lucas MD, Del Mazo-Barbara A, Caminal M, Oliver-Vila I, Cabañas V, S. Lope-Piedrafita, García-López J, Moraleda JM, Fontecha CG, Vives J. Cytotherapy. 2017 :1060-1069. doi: 10.1016/j.jcyt.2017.06.004.
Biodistribution of candidate cell-based therapeutics is a critical safety concern that must be addressed in the preclinical development program. We aimed to design a decision tree based on a series of studies included in actual dossiers approved by competent regulatory authorities, noting that the design, execution and interpretation of pharmacokinetics studies using this type of therapy is not straightforward and presents a challenge for both developers and regulators. This work contributes to the standardization in the design of biodistribution studies by improving methods for accurate assessment of safety.
Eight studies were evaluated for the definition of a decision tree, in which mesenchymal stromal cells (MSCs) were administered to mouse, rat and sheep models using diverse routes (local or systemic), cell labeling (chemical or genetic) and detection methodologies (polymerase chain reaction (PCR), immunohistochemistry (IHC), fluorescence bioimaging, and magnetic resonance imaging (MRI). Moreover, labeling and detection methodologies were compared in terms of cost, throughput, speed, sensitivity and specificity.
Some members of the SeRMN staff and relatives have run today the 6th edition of the La Cursa de la UAB. This charity race is setting up every year by the UAB with the aim to collect founds supporting the La Marató TV3.
Magnetic Resonance in Chemistry 2017 (DOI: 10.1002/mrc.4695)
Abstract
A 1H-1H TOCSY experiment incorporating 13C multiplicity information is proposed. In addition, broadband 1H homodecoupling in the indirect dimension can be implemented using a perfect BIRD module that affords exclusive 1H chemical shift evolution with full decoupling of all heteronuclear and homonuclear (including 2JHH) coupling constants. As a complement to the normal TOCSY and the recent PSYCHE-TOCSY experiments, this novel multiplicity-edited TOCSY experiment distinguishes between CH/CH3 (phased up) and CH2 (phased down) cross-peaks which facilitates resonance analysis and assignment.
Stereoselectivity of Proline / Cyclobutane Amino Acid-Containing Peptide Organocatalysts for Asymmetric Aldol Additions: a Rationale
Ona Illa, Oriol Porcar-Tost, Carme Robledillo, Carlos Elvira, Pau Nolis, Oliver Reiser, Vicenç Branchadell, and Rosa M. Ortuño
J. Org. Chem., Just Accepted Manuscript
DOI: 10.1021/acs.joc.7b02745
Publication Date (Web): November 29, 2017
Abstract
Several α,β,α- or α,γ,α-tripeptides, consisting of a central cyclobutane β- or γ-amino acid being flanked by two (D)- or (L)-proline residues, have been synthesized and tested as organocatalysts in asymmetric aldol additions. High yields and enantioselectivities have been achieved with α,γ,α-tripeptides, being superior to the peptides containing a cyclobutane β-amino acid residue. This can probably be due to their high rigidity, which hinders the peptide catalysts to adopt the proper active conformation. This reasoning correlates with the major conformation of the peptides in the ground state, as suggested by 1H NMR and computational calculations. The configuration of the aldol products is controlled by the proline chirality, and consequently, the R/S configuration of aldol products can be tuned by the use of either commercially available (D)- or (L)-proline enantiomers. The enantioselectivity in the aldol reactions is reversed if the reactions are carried out in the presence of water or other protic solvents such as methanol. Spectroscopic and theoretical investigations revealed that this effect is not the consequence of conformational changes in the catalyst but rather caused by the participation of a water molecule in the rate determining transition state, in such a way that the preferential nucleophilic attack is oriented to the opposite enantiotopic aldehyde face.