Tag Archives: heteronulear coupling constants

Measuring Long-Range Heteronuclear Coupling Constants with Sel-HSQMBC Experiments: A Tutorial

How to measure long‐range proton‐carbon coupling constants from 1H‐selective HSQMBC experiments, by Josep Saurí, Pau Nolis and Teodor Parella. Magn. Reson. Chem. 2019. Early View, DOI: https://onlinelibrary.wiley.com/doi/10.1002/mrc.4928

Heteronuclear long‐range scalar coupling constants (nJCH) are a valuable tool for solving problems in organic chemistry and are especially suited for stereochemical and configurational analyses of small molecules and natural products. This tutorial will focus on the step‐by‐step implementation of several 2D 1H frequency selective HSQMBC experiments for the easy and accurate measurement of either the magnitude or both the magnitude and the sign of long‐range nJCH couplings. The performance of these experiments will be showcased with several scenarios in a range of different experimental conditions.

Bruker pulse program code for selHSQMBC experiments available here.

Bruker pulse program code for selHSQMBC-TOCSY experiment available here.

Strychnine dataset examples available here.

PhD Thesis by Laura Castañar: Pulse Programs and Data Set Examples

Development and application of modern pure shift NMR techniques and improved HSQC/HSQMBC experiments

Presentación1

In the following links one can find Data Set Examples of each Publication presented in the Thesis Work, as well as the corresponding Pulse Program Code for Bruker. All 2D spectra have been previously phased and 2ii, 2ir, and 2ri files removed, otherwise data sets would be too big. Continue reading PhD Thesis by Laura Castañar: Pulse Programs and Data Set Examples

Review – Pure shift NMR experiments: recent developments, methods and applications

MRC_teo copy“Broadband 1H homodecoupled NMR experiments: recent developments, methods and applications” by Laura Castañar and Teodor Parella. Magnetic Resonance in Chemistry, 2015. DOI: 10.1002/mrc.4238

In recent years, a great interest in the development of new broadband 1H homonuclear decoupled techniques providing simplified JHH multiplet patterns has emerged again in the field of small molecule NMR. The resulting highly resolved 1H NMR spectra display resonances as collapsed singlets, therefore minimizing signal overlap and expediting spectral analysis. This review aims at presenting the most recent advances in pure shift NMR spectroscopy, with a particular emphasis to the Zangger–Sterk experiment. Continue reading Review – Pure shift NMR experiments: recent developments, methods and applications

Ultra high-resolution HSQC

SeRMN seminar

  • Date:  Thursday 7th May, 2015
  • Hour: 15:30
  • Location:  SeRMN,  Facultats de Ciències i Biociències, C2/-135
  • Speaker:  Núria Marcó, SeRMN PhD Student

The content of our recently published article entitled “Ultra high-resolution HSQC: Application to the efficient and accurate measurement of heteronuclear coupling constants” will be explained and discussed briefly. A rapid NMR data acquisition strategy in terms of enhanced resolution per time unit for the simple and efficient determination of multiple coupling constants is described. The use of 13C spectral aliasing combined with broadband 1H homodecoupling allows accurate measurements from ultra high resolved 2D HSQC cross-peaks.

Ultra HIgh Resolved HSQCportada

Ultra high-resolution HSQC: Application to the efficient and accurate measurement of heteronuclear coupling constants

Journal cover: Chemical Communications“Ultra high-resolution HSQC: Application to the efficient and accurate measurement of heteronuclear coupling constants” by Núria Marcó,  Andre Fredi and Teodor Parella. Chemical Communications 2015, 51:3262-3265. DOI: 10.1039/C4CC10279G

A rapid NMR data acquisition strategy in terms of enhanced resolution per time unit for the simple and efficient determination of multiple coupling constants is described. The use of 13C spectral aliasing combined with broadband 1H homodecoupling allows accurate measurements from ultra high resolved 2D HSQC cross-peaks.imagen4

 

Pulse Program Code for Bruker:

Data set Example:

Perfect-HSQC experiments: pure in-phase spectra

cover“Suppresión of phase and amplitude JHH modulations in HSQC experiments” by Laura Castañar, Eduard Sistaré, Albert Virgili, Robert Thomas Williamson and Teodor Parella. Magnetic Resonance in Chemistry, 2014 , 53:115-119. DOI: 10.1002/mrc.4149

The amplitude and the phase of cross peaks in conventional 2D HSQC experiments are modulated by both proton–proton, JHH, and proton–carbon, 1JCH, coupling constants. It is shown by spectral simulation and experimentally that JHH interferences are suppressed in a novel perfect-HSQC pulse scheme that incorporates perfect-echo INEPT periods. Continue reading Perfect-HSQC experiments: pure in-phase spectra

Pure In-Phase Heteronuclear Correlation NMR Experiments

“Pure Incover-Phase Heteronuclear Correlation NMR Experiments ” by Laura Castañar, Josep Sauri, Robert Thomas Williamson, Albert Virgili and Teodor Parella. Angew. Chem. Int. Ed. 2014, 53, 8379-8382. DOI: 10.1002/anie.201404136

A general NMR approach to provide pure in-phase (PIP) multiplets in heteronuclear correlation experiments is described. The implementation of a z-filter efficiently suppresses any unwanted anti-phase contributions that usually distort the multiplet pattern of cross-peaks and can make their analysis difficult. Continue reading Pure In-Phase Heteronuclear Correlation NMR Experiments

Presentations at the EUROMAR 2014 Conference

EUROMAR 2014

In a few days several SeRMN members will present our research work at the annual meeting of the European magnetic resonance community EUROMAR 2014 Conference  that will take place in Zurich (Switzerland) from 29th June to 3th July. Find below a summary of our contributions. Continue reading Presentations at the EUROMAR 2014 Conference

PhD Thesis by Josep Saurí: Pulse Programs and Data Set Examples

image cover

In the following links one can find Data Set Examples of each Publication presented in the Thesis Work, as well as the corresponding Pulse Program Code for Bruker. All spectra have been previously phased and 2ii, 2ir, and 2ri files removed, otherwise data sets would be too big. Continue reading PhD Thesis by Josep Saurí: Pulse Programs and Data Set Examples

Efficient and fast sign-sensitive determination of heteronuclear coupling constants

“Efficient and fast sign-sensitive determination of heteronuclear coupling constants” by Josep Saurí, Pau Nolis and Teodor ParellaJournal of Magnetic Resonance 236 (2013) 66–69. DOI: https://dx.doi.org/10.1016/j.jmr.2013.08.013

Two complementary 1D NMR approaches for the fast and easy determination of the magnitude and the sign of heteronuclear J(XH) coupling constants are proposed:The Up&Down technique relies on the direct analysis of anti-phase multiplets whereas the Left&Right technique is based on the relative displacement between separate IPAP components.

Continue reading Efficient and fast sign-sensitive determination of heteronuclear coupling constants