All posts by Silvia

New Book Release: MORPHOLOGICAL MOUSE PHENOTYPING

“MORPHOLOGICAL MOUSE PHENOTYPING: Anatomy, Histology and Imaging” by Jesús Ruberte París, Ana Carretero Romay, and Marc Navarro Beltrán (2016). Editorial Médica Panamericana.

Morphologial Mouse Phenotypiong_BOOKAn extraordinary atlas of mouse anatomy which includes more than 2,200 original images over 600 pages to show the anatomy, histology and cellular structure of mouse organs. This book attempts to provide an overview of the different levels of morphology of the mouse, ranging from gross anatomy and topographical anatomy (to explain the relative position of the organs and structures of a particular body region) down to the microscopic anatomy. Imaging technologies used for that include magnetic resonance imaging (MRI), computed tomography (CT), ultrasonography, angiography, X-ray, and electron microscopy. Also, classical anatomical techniques such as conventional dissection, skeletal preparations, vascular injections, histology and immunohistochemistry have been employed to characterize the mouse morphology.

All MRI images included in this book were acquired at our NMR facility (SeRMN, Universitat Autònoma de Barcelona) in a 7 Tesla Bruker BioSpec spectrometer.

In vivo MRS and ex vivo HRMAS in an Ischemic Rat Stroke Model

JCBMcover“In vivo and ex vivo Magnetic Resonance Spectroscopy of the Infarct and the Subventricular Zone in Experimental Stroke” by E. Jiménez-Xarrié, M. Davila, S. Gil-Perotín, A. Jurado-Rodríguez, A.P. Candiota, R. Delgado-Mederos, S. Lope-Piedrafita, J.M. García-Verdugo, C. Arús, J. Martí-Fàbregas. Journal of Cerebral Blood Flow & Metabolism, 2015, 35:828–834. DOI: 10.1038/jcbfm.2014.257

Ischemic stroke changes the metabolic pattern in the infarct area and also in other regions such as the ipsilateral subventricular zone (SVZi) where neural progenitor cells (NPCs) proliferation is enhanced in the mammalian and human brains. Magnetic resonance spectroscopy (MRS) provides metabolic information in vivo. With regard to NPCs proliferation, a resonance at 1.28 ppm has been described as an in vivo MRS biomarker of NPCs in the hippocampus of rats and humans. Continue reading In vivo MRS and ex vivo HRMAS in an Ischemic Rat Stroke Model

9th Workshop on Magnetic Resonance Spectroscopy and Imaging (MRI/MRS) Applied to Laboratory Animals

Dates: February 3rd to 6th, 2015

Organized by the SeRMN of the Autonomous University of Barcelona (UAB).

This course cMRIombines a comprehensive series of lectures on the technology of Magnetic resonance spectroscopy and imaging (MRS/MRI) with hands-on laboratory sessions to provide practical demonstrations of key concepts and procedures for preclinical studies. Continue reading 9th Workshop on Magnetic Resonance Spectroscopy and Imaging (MRI/MRS) Applied to Laboratory Animals

Hyperpolarized 13C Magnetic Resonance in Acute Liver Failure Rats

2014_coverNMinBiomedReal-time assessment of 13C metabolism  reveals an early lactate increase in the brain of rats with acute liver failure” by Laia Chavarria, Jordi Romero-Giménez, Eva Monteagudo, Silvia Lope-Piedrafita, Juan Cordoba. NMR in Biomedicine (2014) 28:17-23. DOI: 10.1002/nbm.3226

Intracranial hypertension is a severe complication of acute liver failure (ALF) secondary to brain edema. The pathogenesis of cerebral edema in ALF is not clear, but seems to be related to energy metabolism in which lactate may have an important role. The aim of this study was to follow the synthesis of brain lactate using a novel in vivo metabolic technology in a rat model of ALF. Continue reading Hyperpolarized 13C Magnetic Resonance in Acute Liver Failure Rats

Ex vivo method to evaluate MRI contrast agents

“A 2014_coverJnanobiotechnologynew ex vivo method to evaluate the performance of candidate MRI contrast agents: a proof-of-concept study” by Candiota A.P., Acosta M., Simões R.V., Delgado-Goñi T., Lope-Piedrafita S., Irure A., Marradi M., Bomatí-Miguel O., Miguel-Sancho N., Abasolo I., Schwartz S. Jr., Santamaría J., Penadés S., Arús C. J Nanobiotechnology 2014 12:12. DOI: 10.1186/1477-3155-12-12.

A new method has been developed for selecting MRI contrast agents with better expected in vivo performance. This method requires only a very small amount of contrast agent (e.g. 5 nmols/animal, 800 times less than the quantity necessary for in vivo administration) and allows to carry out a more rationally informed candidate selection, avoiding unnecessary in vivo and toxicology tests for the ex vivo poorly performing substances, consequently reducing animal needs, material consumption and overall costs. Continue reading Ex vivo method to evaluate MRI contrast agents

Presentations at the Joint Annual Meeting ISMRM-ESMRMB 2014

Next week several SeRMN members will present our research work at the Joint Annual meeting ISMRM-ESMRMB 2014 that will take place in Milan (Italy) from 10th to 16th May. Find below a summary of our contributions.

Joint Annual Meeting ISMRM-ESMRMB

Continue reading Presentations at the Joint Annual Meeting ISMRM-ESMRMB 2014

Stroke Therapy in Mice

PLoSONEcover“Factors Secreted by Endothelial Progenitor Cells Enhance Neurorepair Responses after Cerebral Ischemia in Mice” by Rosell, A., Morancho, A., Navarro-Sobrino, M., Martínez-Saez, E., Hernández-Guillamon, M., Lope-Piedrafita, S., Barceló, V., Borrás, F., Penalba, A., García-Bonilla, L., Montaner, J. PLoS ONE 8 (2013), e73244. DOI: 10.1371/journal.pone.0073244

Cell therapy with endothelial progenitor cells (EPCs) has emerged as a promising strategy to regenerate the brain after stroke. Continue reading Stroke Therapy in Mice

8th Workshop on Magnetic Resonance Spectroscopy and Imaging (MRI/MRS) Applied to Laboratory Animals

Dates:  10th to 13th June 2013

Organized by the SeRMN of the Autonomous University of Barcelona (UAB).

LimbAngio_3DTOFThis workshop combines a comprehensive series of lectures on the technology of Magnetic resonance spectroscopy and imaging (MRS/MRI) with hands-on laboratory sessions to provide practical demonstrations of key concepts and procedures for preclinical studies.

Whether you are considering MRI as a research tool in your lab or just would like to learn more about MRI, this workshop addresses practical aspects of experimental MRI with laboratory animals and provide valuable hands-on experience on a 7 Tesla Bruker BioSpec spectrometer.

Number of participants will be limited to 4.

For the registration, please fill the Registration Form and email it to silvia.lope@uab.es (registration deadline ends May 27st)

See Workshop Brochure for more information or contact Dra. Silvia Lope.

 

Brain magnetic resonance in liver failure

“Brain magnetic resonance in experimental acute-on-chronic liver failure” by L. Chavarria, M. Oria, J. Romero-Giménez, J. Alonso, S. Lope-Piedrafita, and J. Cordoba.
Liver International 33 (2013) 294-300. DOI: 10.1111/liv.12032

Liver failure causes brain edema that can lead to intracranial hypertension and death. It is currently uncertain whether this water accumulation is predominantly intracellular or extracellular, something important to determine in order to apply the most adequate therapeutic measures. The aim of this study was to investigate the mechanisms involved in the neurological manifestations occurring in an experimental acute-on-chronic liver failure rat model that combines sustained liver injury with a factor inducing an inflammatory response.

Continue reading Brain magnetic resonance in liver failure

Cardiac MRI of the Sirt1-deficient mouse heart

“Dilated cardiomyopathy and mitochondrial dysfunction in Sirt1-deficient mice: A role for Sirt1-Mef2 in adult heart”
by A. Planavila, E. Dominguez, M. Navarro, M. Vinciguerra, R. Iglesias, M. Giralt, S. Lope-Piedrafita, J. Ruberte, F. Villarroya. Journal of Molecular and Cellular Cardiology 53 (2012) 521-531. DOI: 10.1016/j.yjmcc.2012.07.019

The protein deacetylase Sirtuin-1 (Sirt1) is involved in the cardiac hypertrophic responses and cardiac embryo morphogenesis. However, the physiological function of Sirt1 deficiency in the postnatal development of the heart remains to be characterized. The aim of this study was to investigate the relevance of Sirt1 in the development and function of the myocardium by using complementary techniques, such as gene expression, immunoblotting, immunohistochemistry, histological and electron microscopy examinations, and in vivo cardiac magnetic resonance imaging (MRI).

Continue reading Cardiac MRI of the Sirt1-deficient mouse heart