Tag Archives: biomedical research

Using nuclear magnetic resonance urine metabolomics to develop a prediction model of early stages of renal disease in subjects with type 2 diabetes

J Ricardo Lucio-Gutiérrez, Paula Cordero-Pérez, Iris C Farías-Navarro, Ramiro Tijerina-Marquez, Concepción Sánchez-Martínez, José Luis Ávila-Velázquez, Pedro A García-Hernández, Homero Náñez-Terreros, Jordi Coello-Bonilla, Míriam Pérez-Trujillo, Teodor Parella, Liliana Torres-González, Noemí H Waksman-Minsky, Alma L Saucedo

Journal of Pharmaceutical and Biomedical Analysis, 2022, 19, 114885

Abstract

Type 2 diabetes mellitus (DM2) is a multimorbidity, long-term condition, and one of the worldwide leading causes of chronic kidney disease (CKD) –a silent disease, usually detected when non-reversible renal damage have already occurred. New strategies and more effective laboratory methods are needed for more opportune diagnosis of DM2-CKD. This study comprises clinical parameters and nuclear magnetic resonance (NMR)-based urine metabolomics data from 60 individuals (20–65 years old, 67.7% females), sorted in 5 experimental groups (healthy subjects; diabetic patients without any clinical sign of CKD; and patients with mild, moderate, and severe DM2-CKD), according to KDIGO. DM2-CKD produces a continuous variation of the urine metabolome, characterized by an increase/decrement of a group of metabolites that can be used to monitor CKD progression (trigonelline, hippurate, phenylalanine, glycolate, dimethylamine, alanine, 2-hydroxybutyrate, lactate, and citrate). NMR profiles were used to obtain a statistical model, based on partial least squares analysis (PLS-DA) to discriminate among groups. The PLS-DA model yielded good validation parameters (sensitivity, specificity, and area under the curve (AUC) of the receiver operating characteristic curve (ROC) plot: 0.692, 0.778 and 0.912, respectively) and, thus, it can differentiate between subjects with DM2-CKD in early stages, from subjects with a mild or severe condition. This metabolic signature exhibits a molecular variation associated to DM2-CKD, and data suggests it can be used to predict risk of DM2-CKD in patients without clinical signs of renal disease, offering a new alternative to current diagnosis methods.

12th Workshop on Magnetic Resonance Spectroscopy and Imaging (MRI/MRS) Applied to Laboratory Animals

Workshop dates:February 15th – 18th, 2021
Registration deadline:February 8th, 2021
Registration:  online
Capacity:Workshop limited to 4 participants (first come, first served)
Contact person:Silvia Lope-Piedrafita, PhD ()

This course combines a comprehensive series of lectures on the technology of Magnetic resonance spectroscopy and imaging (MRS/MRI) with hands-on laboratory sessions to provide practical demonstrations of key concepts and procedures for preclinical studies.

Whether you are considering MRI as a research tool in your lab or just would like to learn more about MRI, this workshop addresses practical aspects of experimental MRI with laboratory animals and provide valuable hands-on experience on a 7 Tesla Bruker BioSpec spectrometer.

See the workshop brochure for more information or contact Dr. Silvia Lope via email.

In vivo MRI/MRS longitudinal study of immunotherapy in Alzheimer’s

Progression of Alzheimer’s disease and effect of scFv-h3D6 immunotherapy in the 3xTg-AD mouse model: An in vivo longitudinal study using Magnetic Resonance Imaging and Spectroscopy by Güell-Bosch J, Lope-Piedrafita S, Esquerda-Canals G, Montoliu-Gaya L, and Villegas S. NMR in Biomedicine 33(5):e4263; DOI: 10.1002/nbm.4263.

Alzheimer’s disease (AD) is an incurable disease that affects most of the 47 million people estimated as living with dementia worldwide. The main histopathological hallmarks of AD are extracellular β-amyloid (Aβ) plaques and intracellular neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein.  In recent years, Aβ-immunotherapy has been revealed as a potential tool in AD treatment. One strategy consists of using single-chain variable fragments (scFvs), which avoids the fragment crystallizable (Fc) effects that are supposed to trigger a microglial response, leading to microhemorrhages and vasogenic edemas, as evidenced in clinical trials with bapineuzumab. The scFv-h3D6 generated by our research group derives from this monoclonal antibody, which targets the N-terminal of the Aβ peptide and recognizes monomers, oligomers and fibrils.

In this study, 3xTg-AD mice were intraperitoneally and monthly treated with 100 μg of scFv-h3D6 (a dose of ~3.3 mg/kg) or PBS, from 5 to 12 months of age (-mo), the age at which the mice were sacrificed and samples collected for histological and biochemical analyses. During treatments, four monitoring sessions using magnetic resonance imaging and spectroscopy (MRI/MRS) were performed at 5, 7, 9, and 12 months of age. MRI/MRS techniques allow, in a non-invasive manner, to draw an in vivo picture of concrete aspects of the pathology and to monitor its development across time. Compared with the genetic background, 3xTg-AD mice presented a smaller volume in almost all cerebral regions and ages examined, an increase in both the intra and extracellular Aβ1-42 at 12-mo, and an inflammation process at this age, in both the hippocampus (IL-6 and mIns) and cortex (IL-6). In addition, treatment with scFv-h3D6 partially recovered the values in brain volume, and Aβ, IL-6, and mIns concentrations, among others, encouraging further studies with this antibody fragment.

Job offer at CIBER for the INSPiRE-MED project

We are recruiting an Early Stage Researcher to work on a decision-support system based on MRSI data at 3T, for glioblastoma therapy response follow- up, as part of the INSPiRE-MED European project.

We seek a highly motivated and qualified individual as Early Stage Researcher for a three-year applied research project. The successful candidate will contribute to the development of advanced biomedical research tools in the field of Magnetic Resonance Spectroscopy and Imaging, and its application to the clinical day-to-day practice.

Project description: This position is one of the 15 ESR positions of the INSPiRE-MED European Training Network, which focuses on the development of Magnetic Resonance Spectroscopy (MRS) and MR Spectroscopic Imaging (MRSI) combined with Positron Emission Tomography (PET), enhanced by machine learning techniques.

The main aim of the PhD project (ESR12) will be development of a Machine Learning medical decision-support system based on MRSI data at 3T, for glioblastoma therapy response follow-up.

The ESR will develop a novel medical decision support system (MDSS) focused on glioblastoma therapy response follow-up, based on magnetic resonance spectroscopic imaging (MRSI) data, able to take and process data from multiple MRSI formats and centres. For each patient’s MRSI, the MDSS should deliver a nosological or classification image, ready to be fused with images of other MR modalities from the same patient. The DSS will be integrated into the interface of the academic version of jMRUI, in a way that allows clinicians evaluate the system with their data. An important part of of the project will be the incorporation of automated MRSI artifact detection and removal tools.

Continue reading Job offer at CIBER for the INSPiRE-MED project

Job offer for the INSPiRE-MED project

This job offer has expired

Official call by Universitat Autònoma de Barcelona

Deadline for submissions: 21/5/2019 at 23:00

See UAB and/or Euraxess advertisements for further information about the position and how to apply.

We are recruiting an Early Stage Researcher to work on the implementation of high-resolution MRSI methods in a pre-clinical scanner as part of the INSPiRE-MED European project.

We seek a highly motivated and qualified individual as Early Stage Researcher for a three-year applied research project. The successful candidate will contribute to the development of advanced biomedical research tools in the field of Magnetic Resonance Spectroscopy and Imaging, and its application to the clinical day-to-day practice.

Project description: This position is one of the 15 ESR positions of the INSPiRE-MED European Training Network, which focuses on the development of Magnetic Resonance Spectroscopy (MRS) and MR Spectroscopic Imaging (MRSI) combined with Positron Emission Tomography (PET), enhanced by machine learning techniques.

The main aim of the PhD project (ESR4) will be the implementation of innovative high spatial resolution MRSI methods in a pre-clinical scanner. The ultimate goal will be the validation of optimal methods for improving imaging biomarker development of brain tumour in longitudinal studies of therapy response in mouse glioblastoma models. The project will involve evaluation of the methodology performance limits, repeatability and reproducibility compared to stock Bruker Biospec MRSI sequences and the assessment of speed-up MRSI methods in a 7-Tesla pre-clinical scanner.

Continue reading Job offer for the INSPiRE-MED project

Job offer at CIBER for the INSPiRE-MED project

We are recruiting an Early Stage Researcher to work on a decision-support system based on MRSI data at 3T, for glioblastoma therapy response follow- up,as part of the INSPiRE-MED European project.

We seek a highly motivated and qualified individual as Early Stage Researcher for a three-year applied research project. The successful candidate will contribute to the development of advanced biomedical research tools in the field of Magnetic Resonance Spectroscopy and Imaging, and its application to the clinical day-to-day practice.

Project description: This position is one of the 15 ESR positions of the INSPiRE-MED European Training Network, which focuses on the development of Magnetic Resonance Spectroscopy (MRS) and MR Spectroscopic Imaging (MRSI) combined with Positron Emission Tomography (PET), enhanced by machine learning techniques.

The main aim of the PhD project (ESR12) will be development of a Machine Learning medical decision-support system based on MRSI data at 3T, for glioblastoma therapy response follow-up.

The ESR will develop a novel medical decision support system (MDSS) focused on glioblastoma therapy response follow-up, based on magnetic resonance spectroscopic imaging (MRSI) data, able to take and process data from multiple MRSI formats and centres. For each patient’s MRSI, the MDSS should deliver a nosological or classification image, ready to be fused with images of other MR modalities from the same patient. The DSS will be integrated into the interface of the academic version of jMRUI, in a way that allows clinicians evaluate the system with their data. An important part of of the project will be the incorporation of automated MRSI artifact detection and removal tools.

Continue reading Job offer at CIBER for the INSPiRE-MED project

Job offer for the INSPiRE-MED project

Job offer now closed and replaced by this job offer.

We are recruiting an Early Stage Researcher to work on the implementation of high-resolution MRSI methods in a pre-clinical scanner as part of the INSPiRE-MED European project.

We seek a highly motivated and qualified individual as Early Stage Researcher for a three-year applied research project. The successful candidate will contribute to the development of advanced biomedical research tools in the field of Magnetic Resonance Spectroscopy and Imaging, and its application to the clinical day-to-day practice.

Project description: This position is one of the 15 ESR positions of the INSPiRE-MED European Training Network, which focuses on the development of Magnetic Resonance Spectroscopy (MRS) and MR Spectroscopic Imaging (MRSI) combined with Positron Emission Tomography (PET), enhanced by machine learning techniques.

The main aim of the PhD project (ESR4) will be the implementation of innovative high spatial resolution MRSI methods in a pre-clinical scanner. The ultimate goal will be the validation of optimal methods for improving imaging biomarker development of brain tumour in longitudinal studies of therapy response in mouse glioblastoma models. The project will involve evaluation of the methodology performance limits, repeatability and reproducibility compared to stock Bruker Biospec MRSI sequences and the assessment of speed-up MRSI methods in a 7-Tesla pre-clinical scanner.

Continue reading Job offer for the INSPiRE-MED project

INSPiRE-MED project awarded to GABRMN & SeRMN

Integrating Magnetic Resonance Spectroscopy and Multimodal Imaging for Research and Education in MEDicine (INSPiRE-MED) is an European research project awarded in the call H2020-MSCA-ITN-2018, of the MSCA-ITN-ETN – European Training Networks, to a consortium of partners including the GABRMN and SeRMN at UAB. The project is coordinated by Prof. Dominique Sappey-Marinier, of the Université Lyon-1 Claude-Bernard, Lyon, France. The scientist-in-charge at UAB will be Prof. Carles Arús (GABRMN), and Silvia Lope-Piedrafita (SeRMN) and Miquel Cabañas (SeRMN) will participate as senior scientists in the project.

Starting 1st of January 2019, the INSPiRE-MED Initial Training Network will investigate the theoretical and practical aspects of in vivo Magnetic Resonance Spectroscopy (MRS) and Spectroscopic Imaging (MRSI) with applications in oncology and neurology.

The network will host 15 Early Stage Researchers in the field of biomedical imaging, particularly in the field of Magnetic Resonance Spectroscopy (MRS) and MR Spectroscopic Imaging (MRSI) combined with Positron Emission Tomography (PET) and enhanced by machine learning techniques. The research training is supervised by a consortium of 12 academic partners with an established collaborative track record in R&D and 9 industrial partners from the broad and competitive preclinical and clinical imaging sector.

The main research topic to be carried at UAB —in close collaboration with other project members— will be the implementation of innovative high spatial resolution MRSI methods in a pre-clinical scanner. The ultimate goal will be the validation of optimal methods for improving imaging biomarker development of brain tumour in longitudinal studies of therapy response in mouse glioblastoma models.

Continue reading INSPiRE-MED project awarded to GABRMN & SeRMN

Job offer for the TRANSACT-ITN project

We are recruiting an Early Stage Researcher to work on the Development of Decision Support System & Spectral Classification tool meta-plug-ins for the jMRUI platform as part of the TRANSACT-ITN European project.

QR-code of ESR-UAB job offer at EURAXESS site
Scan the QR-code to get this job offer link at the EURAXESS Jobs Portal.

We seek a highly motivated and qualified individual as Early Stage Researcher for a three-year applied research project. The successful candidate will contribute to the development of advanced biomedical research tools in the field of Magnetic Resonance Spectroscopy and Imaging, and its application to the clinical day-to-day practice.

The position is intended for a young post-graduate student/researcher, with a Master degree or equivalent on Engineering or Computer Science, and with a proficient knowledge of the Java programming language. Prior experience on signal and/or image processing, segmentation and pattern recognition applications in the field of biomedical research is an asset, particularly in the field of Magnetic Resonance Spectroscopy and/or Imaging.

Continue reading Job offer for the TRANSACT-ITN project

TRANSACT-ITN project awarded to GABRMN, SeRMN & CIBER-BBN

TRANSCAT ITN ProjectTransforming Magnetic Resonance Spectroscopy into a Clinical Tool (TRANSACT) is an European research project awarded in the call FP7-PEOPLE-2011-ITN, of the 7th Framework Programme Marie-Curie Actions, to a network of partners including the GABRMN and SeRMN at UAB, and the associated partner CIBER-BBN. The project is coordinated by Prof. Sabine Van Huffel, Prof. Uwe Himmelreich, and Dr. Diana Sima, of the Department of Electrical Engineering ESAT-SCD, and Department of Imaging & Pathology, Biomedical MRI Unit, Katholieke Universiteit Leuven, Leuven, Belgium. Scientist-in-charge at UAB will be Prof. Carles Arús (GABRMN) and Miquel Cabañas (SeRMN), and Dr. Margarida Julià-Sapé will be scientist-in-charge at CIBER-BBN. Dr. Silvia Lope-Piedrafita (SeRMN) will take part in the project as senior scientist.

Continue reading TRANSACT-ITN project awarded to GABRMN, SeRMN & CIBER-BBN